Seven
The magnitude is pointing towards the origin and is at - 20 degrees. The combination makes 160 with the x axis: C answer
Eight
They keep doing this. They use distance where they should use displacement but they use distance to try and fool you. It's a mighty poor practice.
The distance between the start and end points is the displacement. That "distance" is 180*sqrt(25) = 900 . The actual distance should be 180*4 + 180*3 = 720 + 540 = 1260. That's what a car's odometer or a bicycle odometer would read. the difference is 360.
I really do object to the wording, but what can I do?
Nine
Nine is the same thing as 8.
Displacement = sqrt(400^2 + 80^2)= sqrt(166400) = 408
The actual distance is 400 + 80 = 480
The difference is the answer = 480 - 408 = 72 <<<< Answer
Ten
This is just the displacement magnitude.
dis = sqrt(30^2 + 80^2)
dis = sqrt(900 + 6400)
dis = sqrt(7300)
dis = 85.44 <<<< Answer D
Twelve
Vi = 2.15*Sin(30) = 1.075 m/s
vf = 0
a = - 9.81
t = ?
<u>Formula</u>
a = (vf - vi)/t
<u>Solve</u>
-9.81 = (0 - 1.075)/t
- 9.81 * t = -1.075
t = 0.11 seconds
Thirteen
I'm leaving this last one to you. You need the initial height xo to answer it properly. Judging by the other questions, this one is right.
Edit
That is a surprise! Really quickly
d = 3.2 m
a = - 9.82
vf = 0
vi = ?
vf^2 = vi^2 - 2*a*d
0 = vi^2 - 2*9.81*3.2
vi = sqrt(19.62*3.2)
vi = 8.0 m/s But that is the vertical component of the speed
v = vi/sin(25)
v = 8.0/sin(25) = 11
Answer:
True The grid with more slits gives more angle separation increases
True. The grating with 10 slits produces better-defined (narrower) peaks
Explanation:
Such a system can be seen as a diffraction network in this case with different number of lines per unit length, the expression for the constructive interference of a diffraction network is
d sin θ = m λ
where d is the distance between slits or lines, m the order of diffraction and λ the wavelength.
For network with 5 slits
d = 1/5 = 0.2
For the network with 10 slits
d = 1/10 = 0.1
let's calculate the separation (teat) for each one
θ = sin⁻¹ (m λ / d)
for 5 slits
θ₅ = sin⁻¹ (m λ 5)
for 10 slits
θ₁₀ = sin⁻¹ (m λ 10)
we can appreciate that for more slits the angle increases
the intensity of a series of slits is
I = I₀ sin²2 (N d/2) / sin² d/2)
when there are more slits (N) the peaks have greater intensity and are more acute (half width decreases)
let's analyze the claims
False
True The grid with more slits gives more angle separation increases
False
True The expression for the intensity of the diffraction peaks the intensity of the peaks increases with the number of slits as well as their spectral width decreases
False
Answer:
Meter
Explanation:
I'd say meters, cause it's the SI unit of length,
which is a Derived Quantity.
Answer:
d = 69 .57 meter
Explanation:
First case
Speed of car ( v ) = 20.5 mi/h = 9.164 M/S
distance ( d ) = 11.6 meter ( m = mass of the car )
Work done = 0.5 m v² = 0.5 * 9.164² * m J = 41.99 m J
Force = ( workdone /distance ) = ( 41.99 m / 11.6 ) = 3.619 m N
Second case
v = 50.2 mi/h = 22.44135 m/s
d = ?
Work done = 0.5 * 22.44² * m J = 251.7768 * m J
Since the braking force remains the same .
3.619 m = ( 251.7768 m / d )
d = 69 .57 meter