1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Archy [21]
3 years ago
10

If a roller coaster cart, with a mass of 100 kg, traveled this coaster, how much kinetic energy would it have at point 'E'?

Physics
1 answer:
zzz [600]3 years ago
8 0

Answer:

Explanation:

Assuming no friction between the roller coaster car and the hill, and neglecting air resistance, the kinetic energy the roller coaster car would have at the bottom of the hill would be equal to its gravitational potential energy at the top of the hill, by conservation of energy.

You might be interested in
I NEED HELP PLEASE, THANKS! :)
mrs_skeptik [129]

Answer:

1. Largest force: C;  smallest force: B; 2. ratio = 9:1

Explanation:

The formula for the force exerted between two charges is

F=K\dfrac{ q_{1}q_{2}}{r^{2}}

where K is the Coulomb constant.

q₁ and q₂ are also identical and constant, so Kq₁q₂ is also constant.

For simplicity, let's combine Kq₁q₂ into a single constant, k.

Then, we can write  

F=\dfrac{k}{r^{2}}

1. Net force on each particle

Let's

  • Call the distance between adjacent charges d.
  • Remember that like charges repel and unlike charges attract.

Define forces exerted to the right as positive and those to the left as negative.

(a) Force on A

\begin{array}{rcl}F_{A} & = & F_{B} + F_{C} + F_{D}\\& = & -\dfrac{k}{d^{2}}  - \dfrac{k}{(2d)^{2}}  +\dfrac{k}{(3d)^{2}}\\& = & \dfrac{k}{d^{2}}\left(-1 - \dfrac{1}{4} + \dfrac{1}{9} \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{-36 - 9 + 4}{36} \right)\\\\& = & \mathbf{-\dfrac{41}{36} \dfrac{k}{d^{2}}}\\\\\end{array}

(b) Force on B

\begin{array}{rcl}F_{B} & = & F_{A} + F_{C} + F_{D}\\& = & \dfrac{k}{d^{2}}  - \dfrac{k}{d^{2}}  + \dfrac{k}{(2d)^{2}}\\& = & \dfrac{k}{d^{2}}\left(\dfrac{1}{4} \right)\\\\& = &\mathbf{\dfrac{1}{4} \dfrac{k}{d^{2}}}\\\\\end{array}

(C) Force on C

\begin{array}{rcl}F_{C} & = & F_{A} + F_{B} + F_{D}\\& = & \dfrac{k}{(2d)^{2}} + \dfrac{k}{d^{2}}  + \dfrac{k}{d^{2}}\\& = & \dfrac{k}{d^{2}}\left( \dfrac{1}{4} +1 + 1 \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{1 + 4 + 4}{4} \right)\\\\& = & \mathbf{\dfrac{9}{4} \dfrac{k}{d^{2}}}\\\\\end{array}

(d) Force on D

\begin{array}{rcl}F_{D} & = & F_{A} + F_{B} + F_{C}\\& = & -\dfrac{k}{(3d)^{2}}  - \dfrac{k}{(2d)^{2}}  - \dfrac{k}{d^{2}}\\& = & \dfrac{k}{d^{2}}\left( -\dfrac{1}{9} - \dfrac{1}{4} -1 \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{-4 - 9 -36}{36} \right)\\\\& = & \mathbf{-\dfrac{49}{36} \dfrac{k}{d^{2}}}\\\\\end{array}

(e) Relative net forces

In comparing net forces, we are interested in their magnitude, not their direction (sign), so we use their absolute values.

F_{A} : F_{B} : F_{C} : F_{D}  =  \dfrac{41}{36} : \dfrac{1}{4} : \dfrac{9}{4} : \dfrac{49}{36}\ = 41 : 9 : 81 : 49\\\\\text{C experiences the largest net force.}\\\text{B experiences the smallest net force.}\\

2. Ratio of largest force to smallest

\dfrac{ F_{C}}{ F_{B}} = \dfrac{81}{9} = \mathbf{9:1}\\\\\text{The ratio of the largest force to the smallest is $\large \boxed{\mathbf{9:1}}$}

7 0
3 years ago
An electric charge, A, is placed carefully between two other charges, B and C, and experiences no net electric force. Do B
Brrunno [24]

Answer:

I do not have  enough information to tell

Explanation:

This is deduced due to the fact that if the net force due to B and C on A is zero, the charges on B and C could either be positive or negative depending on the charge on A.

5 0
3 years ago
With countercurrent flow, diffusion happened in all regions of the filter. Explain why
jeka94

Answer:

When the blood and the dialysate are flowing in the same direction, as the the dialysate and the blood move away from the region of higher concentration of the urea, to a region distant from the source, the concentration of urea in the blood stream and in the dialysis reach equilibrium and diffusion across the semipermeable membrane stops within the higher filter regions such as II, III, IV or V

However, for counter current flow, as the concentration of the urea in the blood stream becomes increasingly lesser the, it encounters increasingly unadulterated dialysate coming from the dialysate source, such that diffusion takes place in all regions of the filter

Explanation:

3 0
4 years ago
A 1200-kg car initially at rest undergoes constant acceleration for 8.8 s, reaching a speed of 10 m/ s. It then collides with a
atroni [7]

Answer:

The final kinetic energy of the two-car system is 60,000 J.

Explanation:

Given;

mass of the car, m = 1200 kg

time of motion, t = 8.8 s

final velocity of the car, v = 10 m/s

Apply the principle of conservation of kinetic energy; the initial kinetic energy is equal final kinetic energy.

K.E_i = K.E_f\\\\K.E_f = \frac{1}{2}mv^2\\\\K.E_f =  \frac{1}{2}(1200)(10)^2\\\\K.E_f = 60,000 \ J

Therefore, the final kinetic energy of the two-car system is 60,000 J.

4 0
3 years ago
What is the total entropy change if a 0.280 efficiency engine takes 3.78E3 J of heat from a 3.50E2 degC reservoir and exhausts i
babymother [125]

Answer:

\Delta S=1.69J/K

Explanation:

We know,

\eta=1-\frac{T_2}{T_1}=1-\frac{Q_2}{Q_1}      ..............(1)

where,

η = Efficiency of the engine

T₁ = Initial Temperature

T₂ = Final Temperature

Q₁ = Heat available initially

Q₂ = Heat after reaching the temperature T₂

Given:

η =0.280

T₁ = 3.50×10² °C = 350°C = 350+273 = 623K

Q₁ = 3.78 × 10³ J

Substituting the values in the equation (1) we get

0.28=1-\frac{Q_2}{3.78\times 10^{3}}

or

\frac{Q_2}{3.78\times 10^3}=0.72

or

Q_2=3.78\times 10^3\times0.72

⇒ Q_2 =2.721\times 10^3 J

Now,

The entropy change (\Delta S) is given as:

\Delta S=\frac{\Delta Q}{T_1}

or

\Delta S=\frac{Q_1-Q_2}{T_1}

substituting the values in the above equation we get

\Delta S=\frac{3.78\times 10^{3}-2.721\times 10^3 J}{623K}

\Delta S=1.69J/K

7 0
3 years ago
Other questions:
  • An object is dropped from a height of 75.0 m above ground level. (a) Determine the distance traveled during the first second. (b
    7·1 answer
  • Explain how an alpine glacier can change the topography of a mountainous area
    5·1 answer
  • As the solar system was forming, ________ came closest to undergoing nuclear fusion and becoming a second sun
    6·1 answer
  • Abdul has not eaten in a while, so his endocrine system releases hormones that slow the process of digestion, which in turn slow
    5·2 answers
  • A daredevil is shot out of a cannon at 45.0° to the horizontal with an initial speed of 31.0 m/s. A net is positioned a horizont
    12·2 answers
  • A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the net
    11·1 answer
  • An object in projectile motion will follow which path? a]curved up from the ground b]curved down toward the ground c]straight do
    5·2 answers
  • Draw graph for positive acceleration, negative acceleration and zeo acceleration​
    13·1 answer
  • A small 18 kilogram canoe is floating downriver at a speed of 1 m/s. What is the canoe's kinetic energy?
    13·1 answer
  • Write down local units of mass?​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!