Answer:
A campfire is a perfect example of the different kinds of heat transfer. If you boil water in a kettle, the heat is transferred through convection from the fire to the pot.
Explanation:
Answer : The energy released by the decay of 3 grams of 'Th' is 
Explanation :
First we have to calculate the mass defect
.
The balanced reaction is,

Mass defect = Sum of mass of product - sum of mass of reactants


conversion used : 
Now we have to calculate the energy released.



The energy released is 
Now we have to calculate the energy released by the decay of 3 grams of 'Th'.
As, 230 grams of Th release energy = 
So, 3 grams of Th release energy = 
Therefore, the energy released by the decay of 3 grams of 'Th' is 
Answer: higher,because when salt is dissolved bonds form between the salt ions and the water molecules
Answer:
a. qm = 627.3 J
b. qw = 627.3 J
c. C₂ = 227.4 J/kg.°C
Explanation:
a.
Since, the calorimeter is completely insulated. Therefore,
Heat Lost by Metal = Heat Gained by water
qm = qw
qm = m₁C₁ΔT₁
where,
qm = heat lost by metal = ?
m₁ = mass of water = (density)(volume) = (1000 kg/m³)(100 mL)(10⁻⁶ m³/1 mL)
m₁ = 0.1 kg
C₁ = specific heat capacity of water = 4182 J/kg.°C
ΔT₁ = Change in Temperature of Water = 19.1°C - 17.6°C = 1.5°C
Therefore,
qm = (0.1 kg)(4182 J/kg.°C)(1.5°C)
<u>qm = 627.3 J</u>
<u></u>
b.
Since,
qm = qw
<u>qw = 627.3 J</u>
<u></u>
c.
qm = m₂C₂ΔT₂
where,
m₂ = mass of metal = 38.1 g = 0.0381 kg
C₂ = specific heat capacity of metal = ?
ΔT₂ = Change in Temperature of metal = 90°C - 17.6°C = 72.4°C
Therefore,
627.3 J = (0.0381 kg)(C₂)(72.4°C)
(627.3 J)/(0.0381 kg)(72.4°C) = C₂
<u>C₂ = 227.4 J/kg.°C</u>