Answer : The molarity of
solution is, 0.352 M
Explanation :
First we have to calculate the moles of 

Molar mass of
= 278.1 g/mol

Now we have to calculate the moles of 
The balanced chemical equation is:

From the balanced reaction we conclude that
As, 1 mole of
produced from 1 mole of 
So, 0.07041 mole of
produced from 0.07041 mole of 
Now we have to calculate the molarity of 


Therefore, the molarity of
solution is, 0.352 M