-Surgen de una interacción.
-Nunca aparece una sola: son dos y simultáneas.
-Actúan sobre cuerpos diferentes: una en cada cuerpo.
-Nunca forman un par de fuerzas: tienen la misma línea de acción.
-Un cuerpo que experimenta una única interacción no está en equilibrio, pues sobre el aparece una fuerza unica que lo acelera. Para estar en equilibrio se requieren por lo menos dos interacciones.
Las mas importantes son la 2,3,4 característica
Answer:
the rotation of earth is determining what part of the sun faces what part of earth making time the part thats away from the sun would be night and the one facing the sun itself would be day
Cheese is made of casein protein, which is originally made from milk and is high in protein. The texture of the cheese is determined by the quality of the milk, so cow's milk cheese differs from goat's milk cheese.
<h3>What is a dairy product?</h3>
Diary products are made from milk, such as cheese, curd, yogurt, etc., but all of them have different nutrients. The quality of these dairy products depend upon the quality of the milk, as some milking animals have a higher concentration of fats in their milk than other animals. These dairy products are used in different industrial sectors, such as for making ice cream, chocolate, and different food products.
Hence, cheese is made up of casein proteins that are present in the milk.
Learn more about the diary products here.
brainly.com/question/2786659
#SPJ1
Command module ✅
service module
lunar module
annum module
Answer:
155.38424 K
2.2721 kg/m³
Explanation:
= Pressure at reservoir = 10 atm
= Temperature at reservoir = 300 K
= Pressure at exit = 1 atm
= Temperature at exit
= Mass-specific gas constant = 287 J/kgK
= Specific heat ratio = 1.4 for air
For isentropic flow

The temperature of the flow at the exit is 155.38424 K
From the ideal equation density is given by

The density of the flow at the exit is 2.2721 kg/m³