Answer:
F = 37.8 × 10^(6) N
Explanation:
The charges are 0.06 C and 0.07 C.
Thus;
Charge 1; q1 = 0.06 C
Charge 2; q2 = 0.07 C
Distance between them; r = 3 m
Formula for the force in between them is;
F = kq1•q2/r²
Where k is a constant = 9 × 10^(9) N.m²/C²
Thus;
F = (9 × 10^(9) × 0.06 × 0.07)/3²
F = 37.8 × 10^(6) N
Answer:
Object appears to move forward at 1 cm/sec, then the velocity drops to zero for 3 sec and then moves forward at 2 cm/sec (11 - 3) / (10 - 6) = 2 cm/sec
<span>Electric field is proportional to q/d^2, where q is the magnitude of the charge and d is the distance. Since all the given units are identical, we can just compare their relative magnitudes without calculating for the exact values.
A) 3/(0.4)^2 = 18.75
B) 1.5/(0.2)^2 = 37.5
C) 6/(0.4)^2 = 37.5
D) 3/(0.2)^2 = 75
Therefore, choice D has the largest electric field of all.
</span>
Answer:
no
Explanation:
i did it and got it right.
I believe it is convention