Explanation:
formula for force is:
force=mass × acceleration
but in case of friction
force =coefficient of friction × Normal Reaction
F. = u × R
U = F/R
but when placed horizontally
R= M×G
M=mass=60kg
G=Gravity(10m/s or 9.8m/s)
F=140N
U=140/60×10
U=140/600
U=0.2333333333
approximately to 3 significant figures
U=0.233
if i am correct rate it 5 star
Answer:
The way that the flask is built it has 3 protective layers.... the inside layer to keep the heat in, the outside layer to reflective the cold, and a vacuum layer, which is an empty layer that limits conduction and convection
Explanation:
Answer:
36 N
Explanation:
Velocity of a standing wave in a stretched string is:
v = √(T/ρ),
where T is the tension and ρ is the mass per unit length.
300 m/s = √(T / 4×10⁻⁴ kg/m)
T = 36 N
Answer:
See the answers below.
Explanation:
The cost of energy can be calculated by multiplying each given value, a dimensional analysis must be taken into account in order to calculate the total value of the cost in Rs.
![Cost=0.350[kW]*12[\frac{hr}{1day}]*30[days]*4.5[\frac{Rs}{kW*hr} ]=567[Rs]](https://tex.z-dn.net/?f=Cost%3D0.350%5BkW%5D%2A12%5B%5Cfrac%7Bhr%7D%7B1day%7D%5D%2A30%5Bdays%5D%2A4.5%5B%5Cfrac%7BRs%7D%7BkW%2Ahr%7D%20%5D%3D567%5BRs%5D)
The fuse can be calculated by knowing the amperage.

where:
P = power = 350 [W]
V = voltage = 240 [V]
I = amperage [amp]
Now clearing I from the equation above:
![I=P/V\\I=350/240\\I=1.458[amp]](https://tex.z-dn.net/?f=I%3DP%2FV%5C%5CI%3D350%2F240%5C%5CI%3D1.458%5Bamp%5D)
The fuse should be larger than the current of the circuit, i.e. about 2 [amp]
Answer:
On moon time period will become 2.45 times of the time period on earth
Explanation:
Time period of simple pendulum is equal to
....eqn 1 here l is length of the pendulum and g is acceleration due to gravity on earth
As when we go to moon, acceleration due to gravity on moon is
times os acceleration due to gravity on earth
So time period of pendulum on moon is equal to
--------eqn 2
Dividing eqn 2 by eqn 1


So on moon time period will become 2.45 times of the time period on earth