(a) The velocity ratio of the screw is 1570.8.
(b) The mechanical advantage of the screw is 785.39.
<h3>
Velocity ratio of the screw</h3>
The velocity ratio of the screw is calculated as follows;
V.R = 2πr/P
where;
- P is the pitch = 1/10 cm = 0.1 cm = 0.001 m
- r is radius = 25 cm = 0.25 m
V.R = (2π x 0.25)/(0.001)
V.R = 1570.8
<h3>Mechanical advantage of the screw</h3>
E = MA/VR x 100%
0.5 = MA/1570.8
MA = 785.39
Learn more about mechanical advantage here: brainly.com/question/18345299
#SPJ1
The correct answer for the question that is being presented above is this one: "(a)4." Suppose that during any period of 1/4 second there is one instant at which the crests or troughs of component waves are exactly in phase and maximum <span>reinforcement occurs, in 1 second, there will be 4 beats.</span>
TLDR: It will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.
This is an example that requires you to investigate the properties that occur in electric generators; for example, hydroelectric dams produce electricity by forcing a coil to rotate in the presence of a magnetic field, generating a current.
To solve this, we need to understand the principles of electromotive forces and Lenz’ Law; changing the magnetic field conditions around anything with this potential causes an induced current in the wire that resists this change. This principle is known as Lenz’ Law, and can be described using equations that are specific to certain situations. For this, we need the two that are useful here:
e = -N•dI/dt; dI = ABcos(theta)
where “e” describes the electromotive force, “N” describes the number of loops in the coil, “dI” describes the change in magnetic flux, “dt” describes the change in time, “A” describes the area vector of the coil (this points perpendicular to the loops, intersecting it in open space), “B” describes the magnetic field vector, and theta describes the angle between the area and mag vectors.
Because the number of loops remains constant and the speed of the coils rotation isn’t up for us to decide, the only thing that can increase or decrease the emf is the change in magnetic flux, represented by ABcos(theta). The magnetic field and the size of the loop are also constant, so all we can control is the angle between the two. To generate the largest emf, we need cos(theta) to be as large as possible. To do this, we can search a graph of cos(theta) for the highest point. This occurs when theta equals 90 degrees, or a right angle. Therefore, the electromotive potential will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.
Hope this helps!
Answer: Electrons move around the nucleus in fixed orbits of equal levels of energy
Explanation:
The statement that accurately represents the arrangement of electrons in Bohr’s atomic model is that the electrons move around the nucleus in fixed orbits of equal levels of energy.
It should be noted that the electrons have a fixed energy level when they travel around the nucleus in with energies which varies for different levels.
Higher energy levels are depicted by the orbits that are far from the nucleus. There's emission of light when the electrons then return back to a lower energy level.
The statement “Electrons are pulled closer to the oxygen
atom” correctly describes the electrons in a water molecule. The
correct answer between all the choices given is the second choice or letter B. I
am hoping that this answer has satisfied your query and it will be able to help
you in your endeavor, and if you would like, feel free to ask another question.