Answer:
The coefficient of kinetic friction 
Explanation:
From the question we are told that
The length of the lane is 
The speed of the truck is 
Generally from the work-energy theorem we have that

Here N is the normal force acting on the truck which is mathematically represented as
is the change in kinetic energy which is mathematically represented as
=>
=>

=> 
=> 


<u />



It takes 20347.4098071s for light from the sun to reach Pluto.
The 6.1*10^9 is replaced by 6.1*10^12 on line 4 because we convert the distance from km to m.
c = speed of light. If a different value was given in the previous question then use that instead of the value I used to do the final calculation.
Answer:
Recessed incandescent luminaires not marked type ic and those marked for installing directly in insulated ceilings must not have insulation over the top of the luminaire.
Explanation:
Depending on how they interact with insulation, lighting fixtures are rated at various levels. Non-IC rated lighting fixtures can accommodate higher wattage bulbs, but they also pose the greatest fire risk when used with the incorrect insulation.
In locations with insulation, light fixtures that are not IC rated may be installed. But there is a condition. The distance between the fixture and any insulation should be 3 inches. But the 3 inch gap in the insulation would negate the goal of insulation by producing a lot of uninsulated space, so this defies logic. Building a box-style cover to cover the fixture on the attic side is one option to fix this. Drywall or foil-faced foam insulation can be used to create this box. After the cover is put in place, insulation can be added for maximum effectiveness.
To learn more about recessed incandescent luminaries. Click brainly.com/question/17218799
#SPJ4
Answer:
False
Explanation:
In addition to stars, our galaxy contains abundant diffuse matter that is distributed throughout its volume and constitutes what we call the interstellar medium. This medium plays a fundamental role in the life cycle of the stars, since it is where the matter from which they are born resides, and it is the place to which it returns when the stars expel their outer layers at death.
The interstellar medium is a complex environment. <u>Its matter is </u><u>not </u><u>distributed uniformly</u>, but consists of different phases with temperatures ranging from a few degrees Kelvin (near absolute zero) in the areas of star formation to the millions of degrees Kelvin observed in supernova remnants. The densities of interstellar matter also vary orders of magnitude according to the phase, but they are always so low that they rival those that can be achieved in the best vacuum chambers of terrestrial laboratories. Depending on the density and temperature conditions, interstellar matter is in a molecular, atomic, or ionized state, although the state is not permanent, since matter circulates between the different phases in a continuous cycle of evolution on a galactic scale.
Due to the very different characteristics of its multiple phases, the interstellar medium has to be studied using various observational techniques and different types of telescopes. The coldest components of the interstellar medium do not emit visible light, and require the observation of telescopes sensitive to the weak emission of radio waves that this material produces. Using different radio telescopes, such as the 40-meter diameter of the Yebes Observatory, which the Institute of Radio Astronomy Millimeter, to which the IGN belongs, has in Grenoble and Granada, or the recently opened Atacama Large Millimeter / submillimeter Array in the Atacama desert in Chile, astronomers from the National Astronomical Observatory contribute to characterize the physical and chemical properties of the molecular clouds where stars are born and of the circumestellar shells produced by the stars in the last stages of their lives . The study of these regions is helping to complete our knowledge of the most unknown phases of the complex life cycle of stars.
T=s/v=>t=1500/1,5=1000s
1,5km=1500m