Answer:
Explanation:
plate separation = 2.3 x 10⁻³ m
capacity C₁ = ε A / d
= ε A / 2.3 x 10⁻³
C₂ = ε A / 1.15 x 10⁻³
= 
a ) when charge remains constant
energy = 
q is charge and C is capacity
energy stored initially E₁= 
energy stored finally E₂ = 
= 
= 
= 
= 4.19 J
b )
In this case potential diff remains constant
energy of capacitor = 1/2 C V²
energy is proportional to capacity as V is constant .


= 16.76 .
Answer:
The mass's acceleration is 5 m/s^2 in the minus X direction and 9,8 m/s^2 in the minus Y direction.
Explanation:
By applying the second Newton's law in the X and Y direction we found that in the minus X direction an external force of 10 N is exerted, while in the minus Y direction the gravity acceleration is acting:
X-direction balance force:
Y-direction balance force:
Where ax and ay are the components of the respective acceleration and m is the mass. By solving for each acceleration:
Note that for the second equation above the mass is cancelled and, the Y direction acceleration is minus the gravity acceleration:
For the x component aceleration we must replace the Newton unit:

Answer:
a. A = 0.735 m
b. T = 0.73 s
c. ΔE = 120 J decrease
d. The missing energy has turned into interned energy in the completely inelastic collision
Explanation:
a.
4 kg * 10 m /s + 6 kg * 0 m/s = 10 kg* vmax
vmax = 4.0 m/s
¹/₂ * m * v²max = ¹/₂ * k * A²
m * v² = k * A² ⇒ 10 kg * 4 m/s = 100 N/m * A²
A = √1.6 m ² = 1.26 m
At = 2.0 m - 1.26 m = 0.735 m
b.
T = 2π * √m / k ⇒ T = 2π * √4.0 kg / 100 N/m = 1.26 s
T = 2π *√ 10 / 100 *s² = 1.99 s
T = 1.99 s -1.26 s = 0.73 s
c.
E = ¹/₂ * m * v²max =
E₁ = ¹/₂ * 4.0 kg * 10² m/s = 200 J
E₂ = ¹/₂ * 10 * 4² = 80 J
200 J - 80 J = 120 J decrease
d.
The missing energy has turned into interned energy in the completely inelastic collision
Explanation:
w = f x d
45 x 1.4 = 630j
to get newton's do 45 x gravitation field strength
Answer:
6.1328 kg
60.16284 N
Explanation:
r = Radius of ball = 0.11 m
= Density of fluid =
(Assumed)
g = Acceleration due to gravity = 9.81 m/s²
m = Mass of ball
V = Volume of ball = 
The weight of the bowling ball will balance the buouyant force

The mass of the bowling ball will be 6.1328 kg
Weight will be 