What you need to know is that the force is
F=ma
The force is the product of mass and acceleration
this means that the acceleration is
a=F/m
a) The force is halved?
this means that f will be

now:
a=

So the accelaration will also he halved (it's the original acceleratation divided by 2)
b) The object's mass is halved?
a=

=a=

which is the original acceleration times two!! so it will double
c) The force and the object's mass are both halved?
now we have
a=

=a=

=a=

so they will cancel each other out and the acceleration will stay the same!
Answer:
1.8 s
Explanation:
Potential energy = kinetic energy + rotational energy
mgh = ½ mv² + ½ Iω²
For a thin spherical shell, I = ⅔ mr².
mgh = ½ mv² + ½ (⅔ mr²) ω²
mgh = ½ mv² + ⅓ mr²ω²
For rolling without slipping, v = ωr.
mgh = ½ mv² + ⅓ mv²
mgh = ⅚ mv²
gh = ⅚ v²
v = √(1.2gh)
v = √(1.2 × 9.81 m/s² × 4.8 m sin 39.4°)
v = 5.47 m/s
The acceleration down the incline is constant, so given:
Δx = 4.8 m
v₀ = 0 m/s
v = 5.47 m/s
Find: t
Δx = ½ (v + v₀) t
t = 2Δx / (v + v₀)
t = 2 (4.8 m) / (5.47 m/s + 0 m/s)
t = 1.76 s
Rounding to two significant figures, it takes 1.8 seconds.
Answer:
Particle spacing increases and it's called evaporating
Answer:
61.85 ohm
Explanation:
L = 12 m H = 12 x 10^-3 H, C = 15 x 10^-6 F, Vrms = 110 V, R = 45 ohm
Let ω0 be the resonant frequency.


ω0 = 2357 rad/s
ω = 2 x 2357 = 4714 rad/s
XL = ω L = 4714 x 12 x 10^-3 = 56.57 ohm
Xc = 1 / ω C = 1 / (4714 x 15 x 10^-6) = 14.14 ohm
Impedance, Z = 
Z = \sqrt{45^{2}+\left ( 56.57-14.14 )^{2}} = 61.85 ohm
Thus, the impedance at double the resonant frequency is 61.85 ohm.