Answer:
The pressure drop predicted by Bernoulli's equation for a wind speed of 5 m/s
= 16.125 Pa
Explanation:
The Bernoulli's equation is essentially a law of conservation of energy.
It describes the change in pressure in relation to the changes in kinetic (velocity changes) and potential (elevation changes) energies.
For this question, we assume that the elevation changes are negligible; so, the Bernoulli's equation is reduced to a pressure change term and a change in kinetic energy term.
We also assume that the initial velocity of wind is 0 m/s.
This calculation is presented in the attached images to this solution.
Using the initial conditions of 0.645 Pa pressure drop and a wind speed of 1 m/s, we first calculate the density of our fluid; air.
The density is obtained to be 1.29 kg/m³.
Then, the second part of the question requires us to calculate the pressure drop for a wind speed of 5 m/s.
We then use the same formula, plugging in all the parameters, to calculate the pressure drop to be 16.125 Pa.
Hope this Helps!!!
Answer:
50 W
Explanation:
Case 1
Power = V * I
100 = 220 * I
I = A
Case 2
P = V * I
P = 110 *
P = 50 W
I think the answer is 50 W
Hope it helps
D. It must be able to be magnetized
Explanation:
The requirement for a core to be used in an electromagnet is that it must be able to be magnetized.
An electromagnet is a type of magnet produced by electricity.
- They typically run and produce magnetic fields in the vicinity of electrical currents.
- These magnets are not permanent magnets.
- When the electrical current is removed, the magnetic property of the substance is lost.
- The core of an electromagnet is usually made up of a material that can easily be magnetized in the presence of magnetic fields.
- Some of the materials used are cobalt, iron, nickel.
learn more:
Electromagnet brainly.com/question/2191993
#learnwithBrainly