To solve this problem it is necessary to simply apply the concepts related to cross-multiply and proportion between units.
Let's start first by relating the amount of dose needed to be supplied per hour, in other words,
The infusion of 250ml should be supplied at a rate of 75ml / hour, so what amount x of mg hour should be supplied with 50Mg.




Converting to mcg units we know that 1mg is equal to 1000mcg and that 1 hour contains 60 min, therefore



The dose should be distributed per kilogram of the patient so if the patient weighs 72.4kg,


Therefore the client will receive 3.5mcg/kg/min.
The particle's acceleration is 5.1 m/s²
<h3>
What is Acceleration ?</h3>
Acceleration can be defined as the rate at which velocity is changing. It is a vector quantity and it is measured in m/s²
Given that a particle is moving along a straight line with constant acceleration has a velocity of 2.35 m/s at t=3.42 s, and a velocity of -8.72 m/s at t=5.59s
The given parameters are;
Acceleration a = ΔV ÷ ΔT
a = (2.35 + 8.72) / (5.59 - 3.42)
a = 11.07 / 2.17
a = 5.1 m/s²
Therefore, the particle's acceleration is 5.1 m/s²
Learn more about Acceleration here: brainly.com/question/9069726
#SPJ1
Energy of gamma rays is given by equation

here we know that
h = Planck's constant

now energy is given as


now by above equation



now for wavelength we can say


