Answer:
You use a force of 150 N to push a 30 kg crate across the floor for a distance of 10 m. If the crate is moving at a speed of 5 m/s…
Answer:
![\mu _j=\dfrac{1}{C_p}\left [T\left(\frac{\partial v}{\partial T}\right)_p-v\right]dp](https://tex.z-dn.net/?f=%5Cmu%20_j%3D%5Cdfrac%7B1%7D%7BC_p%7D%5Cleft%20%5BT%5Cleft%28%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20T%7D%5Cright%29_p-v%5Cright%5Ddp)
Explanation:
Joule -Thompson effect
Throttling phenomenon is called Joule -Thompson effect.We know that throttling is a process in which pressure energy will convert in to thermal energy.
Generally in throttling exit pressure is low as compare to inlet pressure but exit temperature maybe more or less or maybe remains constant depending upon flow or fluid flow through passes.
Now lets take Steady flow process
Let
Pressure and temperature at inlet and
Pressure and temperature at exit
We know that Joule -Thompson coefficient given as

Now from T-ds equation
dh=Tds=vdp
So
![Tds=C_pdt-\left [T\left(\frac{\partial v}{\partial T}\right)_p\right]dp](https://tex.z-dn.net/?f=Tds%3DC_pdt-%5Cleft%20%5BT%5Cleft%28%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20T%7D%5Cright%29_p%5Cright%5Ddp)
⇒![dh=C_pdt-\left [T\left(\frac{\partial v}{\partial T}\right)_p-v\right]dp](https://tex.z-dn.net/?f=dh%3DC_pdt-%5Cleft%20%5BT%5Cleft%28%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20T%7D%5Cright%29_p-v%5Cright%5Ddp)
So Joule -Thompson coefficient
![\mu _j=\dfrac{1}{C_p}\left [T\left(\frac{\partial v}{\partial T}\right)_p-v\right]dp](https://tex.z-dn.net/?f=%5Cmu%20_j%3D%5Cdfrac%7B1%7D%7BC_p%7D%5Cleft%20%5BT%5Cleft%28%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20T%7D%5Cright%29_p-v%5Cright%5Ddp)
This is Joule -Thompson coefficient for all gas (real or ideal gas)
We know that for Ideal gas Pv=mRT

So by putting the values in
![\mu _j=\dfrac{1}{C_p}\left [T\left(\frac{\partial v}{\partial T}\right)_p-v\right]dp](https://tex.z-dn.net/?f=%5Cmu%20_j%3D%5Cdfrac%7B1%7D%7BC_p%7D%5Cleft%20%5BT%5Cleft%28%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20T%7D%5Cright%29_p-v%5Cright%5Ddp)
For ideal gas.
Answer:
1. 11 A
2. 240 V
3. 8 Ω
4. 60 C
5. 14400 C
Explanation:
1. Determination of the current.
Voltage (V) = 110 V
Resistance (R) = 10 Ω
Current (I) =?
V = IR
110 = I × 10
Divide both side by 10
I = 110 / 10
I = 11 A
2. Determination of the voltage
Current (I) = 3 A
Resistance (R) = 80 Ω
Voltage (V) =?
V = IR
V = 3 × 80
V = 240 V
3. Determination of the resistance.
Current (I) = 0.5 A
Voltage (V) = 4 V
Resistance (R) =?
V = IR
4 = 0.5 × R
Divide both side by 0.5
R = 4 / 0.5
R = 8 Ω
4. Determination of the charge
Current (I) = 2 A
Time (t) = 30 s
Charge (Q) =?
Q = it
Q = 2 × 30
Q = 60 C
5. Determination of the charge.
We'll begin by converting 20 mins to seconds. This can be obtained as follow:
1 min = 60 s
Therefore,
20 mins = 20 × 60
20 mins = 1200 s
Finally, we shall determine the charge as follow:
Current (I) = 12 A
Time (t) = 1200 s
Charge (Q) =?
Q = it
Q = 12 × 1200
Q = 14400 C
The watt<span> (symbol: W) is a unit of power i hope this helps you</span>
Total weight = Volume × density
5) calculate weight of concrete slab by multiplying volume and their density in similar unit as Weight = Volume× density, density= 150lb/ cf, so total weight = 33 cf × 150 lb/cf = 4950 pounds or 2.475 short tons.