Answer:
420 miles.
Step-by-step explanation:
You would have to be infinitely far away from a sphere in order to see exactly 50% of its surface all at the same moment. Using simple geometry, you can prove that an observer that is a distance d away from the surface of a sphere with radius R can only see a percent area A of the sphere's surface as given by the equation:
A = 50%/(1+R/d)
Where A is the area seen,
R is the earth's radius 4000 miles
And D is the distance above the earth 200 miles
50% = 0.5 in fraction
Substituting values we have
A = 0.5(1 + 4000/200)
A = 0.5(1 + 20) = 0.5 x 21
A = 10.5%
10.5% of 4000 miles = 420 miles.
Answer:
∠C ≅ ∠M or ∠B ≅ ∠L
Step-by-step explanation:
You are given an angle and its opposite side as being congruent. AAS requires two congruent angles and one side, so you need another set of congruent angles (one in each triangle). It does not matter which they are. The above-listed pairs are appropriate.*
_____
* Since the figure cannot be assumed to be drawn to scale, either of angles B or C could be declared congruent to either of angles L or M. However, it appears that angles B and L are opposite the longest side of the triangle, so it makes good sense to declare that pair congruent. The same congruence statement (ΔBCD≅ΔLMN) would result from declaring angles C and M congruent. So, either declaration will work (matches the last answer choice.)
__
AAS requires two angles and a side. One side is already marked, so we do not need any more information about sides. (The second and third answer choices can be rejected as irrelevant.)
Answer:
the slope is -1/6
Step-by-step explanation:
I hope it helps
In fact, both Amanda's and Stephen's profs are correct; they are just using different supplementary angles. Amanda's is using the supplementary angles <span>∠1 and ∠4, and</span> ∠3 and ∠4, whereas Stephen is using ∠1 and ∠2, and <span>∠2 and ∠3.</span><span> </span>Please check the picture to visualize this more effectively.
Answer:
Step-by-step explanation:
(7y)² = 7²×y² = 49y²