Magma can push through holes or cracks in the crust of the volcano, causing a volcanic eruption. Which is when magma flows or erupts onto earth's surface, which is what you call lava (whenever it goes onto the earths surface).
Answer:
C. 1.35
Explanation:
2NH3 (g) <--> N2 (g) + 3H2 (g)
Initial concentration 2.2 mol/0.95L 1.1 mol/0.95L 0
change in concentration 2x x 3x
-0.84 M +0.42M +1.26M
Equilibrium 1.4 mol/0.95L=1.47M 1.58 M 1.26 M
concentration
Change in concentration(NH3) = (2.2-1.4)mol/0.95 L = 0.84M
Equilibrium concentration (N2) = 1.1/0.95 +0.42=1.58 M
Equilibrium concentration(NH3) = 1.4/0.95 = 1.47M
K = [N2]*{H2]/[NH3] = 1.58M*1.26M/1.47M = 1.35 M
The metalloids are mostly concentrated in groups 14, 15, and 16. (Some simpler charts will show them as 4A, 5A, and 6A - take a look at the top of the periodic table your class uses to double-check).
If you like my answer, please vote me a 'brainliest' - trying to improve my rank :-)
There are 237. 5 g of Sulfur,S in 475 g of SO2?
<h3 />
<h3>Calculation of grams of Sulfur</h3>
From the question, we can say that
- The molar mass of sulfur = 32 g/mol
- The molar mass of oxygen = 16 g/mol
Therefore,
The molar mass for SO2 = 32 + (16 × 2) g/mol = 64 g/mol
Now,
If 1 mole of SO2 contains 1 mole of S
Then 64 g of SO2, will contain 32g of S;
Such that
475 g of SO2 will give {
} = 237. 5 g of Sulfur.
Learn more about molar mass here :brainly.com/question/18291695
Answer:
mass ( g ) = 348 g
Explanation:
First you know : M = mole / volume (L)
in question you have the M and V and the formula of SUBSTANCE ( KF )
first you get the number of mole from equation above
so 3 = no of mole / 2
no of mole = 3 × 2 = 6 moles
and the moles equation is no of moles = mass ( g ) / molecular weight ( g/mole )
so you have already calculate the moles and you can know the MW from the Question
Mw of KF = 39 + 19 = 58
so n = mass / MW
so 6 = mass / 58
mass ( g ) = 348 g
GOOD LUCK