Explanation:
Given parameters:
Mass of Neil Armstrong = 160kg
Gravitational pull of earth = 10N/kg
Moon's pull = 17% of the earth's pull
Unknown:
Difference between Armstrong's weight on moon and on earth.
Solution:
To find the weight,
Weight = mass x acceleration due to gravity = mg
Moon's gravitational pull = 17% of the earth's pull = 17% x 10 = 1.7N/kg
Weight on moon = 160 x 1.7 = 272N
Weight on earth = 160 x 10 = 1600N
The difference in weight = 1600 - 272 = 1328N
The weight of Armstrong on earth is 1328N more than on the moon.
Learn more:
Weight and mass brainly.com/question/5956881
#learnwithBrainly
One of the concepts to be used to solve this problem is that of thermal efficiency, that is, that coefficient or dimensionless ratio calculated as the ratio of the energy produced and the energy supplied to the machine.
From the temperature the value is given as

Where,
T_L = Cold focus temperature
T_H = Hot spot temperature
Our values are given as,
T_L = 20\° C = (20+273) K = 293 K
T_H = 440\° C = (440+273) K = 713 K
Replacing we have,



Therefore the maximum possible efficiency the car can have is 58.9%
Answer:
14.85 m/s
Explanation:
From the question given above, the following data were obtained:
Height (h) of tower = 45 m
Horizontal distance (s) moved by the balloon = 45 m
Horizontal velocity (u) =?
Next, we shall determine the time taken for the balloon to hit the shoe of the passerby. This is illustrated below:
Height (h) of tower = 45 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
45 = ½ × 9.8 × t²
45 = 4.8 × t²
Divide both side by 4.9
t² = 45/4.9
Take the square root of both side
t = √(45/4.9)
t = 3.03 s
Finally, we shall determine the magnitude of the horizontal velocity of the balloon as shown below:
Horizontal distance (s) moved by the balloon = 45 m
Time (t) = 3.03 s
Horizontal velocity (u) =?
s = ut
45 = u × 3.03
Divide both side by 3.03
u = 45/3.03
u = 14.85 m/s
Thus, the magnitude of the horizontal velocity of the balloon was 14.85 m/s
What is the weight of a 4.2 kg bowling ball on Mars?
Answer:
1.59 kg
Explanation:
The formula is:
<u>F = G((Mm)/r2)
</u>
F is the gravitational force between two objects,
G is the Gravitational Constant (6.674×10-11 Newtons x meters2 / kilograms2),
M is the planet's mass (kg),
m is your mass (kg), and
r is the distance (m) between the centers of the two masses (the planet's radius).
Hope this helps
--Jay