The density of the nickel was greater than that of the quarter and penny, thus, the results supports the hypothesis.
<h3>What is density of substance?</h3>
The density of a substance is a measure of how tightly-packed the particles of the substance are.
Density is calculated as the ratio of the mass of the substance and the volume of the substance.
The hypothesis of the lab to compare the densities of a penny, a nickel, and a quarter is:
- If the nickel has a greater density than the quarter and penny, then it will have a greater mass to volume ratio. If the nickel has a lower density than the quarter and penny, then it will have a lower mass-to-volume ratio.
The average mass and the average volume of a penny, a nickel, and a quarter are then used to determine the density of each coin.
Based on obtained results, it would be found that the density of the nickel was greater than that of the quarter and penny. Therefore, the results supports the hypothesis.
In conclusion, the density of a substance depends on the mass and the volume.
Learn more about density at: brainly.com/question/1354972
#SPJ1
That's what stars do all the time.
For example, in the sun (and MOST other stars), deep down in the center
of the sun's core, two atoms of Hydrogen get squashed together so hard
that they blend into one atom of Helium AND release some energy.
That's where the sun's energy all comes from. It's called "nuclear fusion".
It needs tremendous temperature and pressure to happen. We know how
to do it, but we can't control it. So far, the only thing we've ever been able
to use it for is Hydrogen bombs.
There are 92 elements on the Periodic Table that are found in nature,
plus another 20 or so that have been made in the laboratory, but only
a few atoms of them.
It does produce 'sound' ... a compression wave traveling through the air. But your ears don't hear a sound that's vibrating less than 20 or 30 times every second. If you could swing your pendulum that fast, you could hear the sound of its vibrations pushing the air around.