Before going to solve this question first we have to understand specific heat capacity of a substance .
The specific heat of a substance is defined as amount of heat required to raise the temperature of 1 gram of substance through one degree Celsius. Let us consider a substance whose mass is m.Let Q amount of heat is given to it as a result of which its temperature is raised from T to T'.
Hence specific heat of a substance is calculated as-
![c= \frac{Q}{m[T'-T]}](https://tex.z-dn.net/?f=c%3D%20%5Cfrac%7BQ%7D%7Bm%5BT%27-T%5D%7D)
Here c is the specific heat capacity.
The substance whose specific heat capacity is more will take more time to be heated up to a certain temperature as compared to a substance having low specific heat which is to be heated up to the same temperature.
As per the question John is experimenting on sand and water.Between sand and water,water has the specific heat 1 cal/gram per degree centigrade which is larger as compared to sand.Hence sand will be heated faster as compared to water.The substance which is heated faster will also cools faster.
From this experiment John concludes that water has more specific heat as compared to sand.
Answer:
15 less mins will be used by Bob
Explanation:
This is because it takes Tim 2000/50= 40mins to type the whole work
While it takes Bob 2000/80= 25 mins
So the difference 40-25= 15mins
Will be 15mins
Answer:

Explanation:
The capacitance of a parallel plate capacitor is given by:
(1)
where
is the vacuum permittivity
A is the area of the plates
d is the separation between the plates
The charge stored on the capacitor is given by
(2)
where C is the capacitance and V is the voltage across the capacitor.
The displacement current in the capacitor is given by
(3)
where t is the time elapsed
Substituting (1) and (2) into (3), we find an expression for the displacement current:

where we have



Substituting into the equation, we find

Earths tilt making the sun go haywire lol XD