Answer:
Explanation:
Let the volume of air be V. at atmospheric pressure, that is 10⁵ Pa
At 20 m below surface pressure will be
atmospheric pressure + hdg
10⁵ + 20 x 9.8 x 1000 = 2.96 x 10⁵Pa
At this pressure volume V becomes V/ 2.96
This volume will last 1/2.96 times time that is 60/2.96 = 20.27 minutes.
Given Information:
Power = P = 100 Watts
Voltage = V = 220 Volts
Required Information:
a) Current = I = ?
b) Resistance = R = ?
Answer:
a) Current = I = 0.4545 A
b) Resistance = R = 484 Ω
Explanation:
According to the Ohm’s law, the power dissipated in the light bulb is given by

Where V is the voltage across the light bulb, I is the current flowing through the light bulb and P is the power dissipated in the light bulb.
Re-arranging the above equation for current I yields,

Therefore, 0.4545 A current is flowing through the light bulb.
According to the Ohm’s law, the voltage across the light bulb is given by

Where V is the voltage across the light bulb, I is the current flowing through the light bulb and R is the resistance of the light bulb.
Re-arranging the above equation for resistance R yields,

Therefore, the resistance of the bulb is 484 Ω
Answer:
The ratio of T2 to T1 is 1.0
Explanation:
The gravitational force exerted on each sphere by the sun is inversely proporational to the square of the distance between the sun and each of the spheres.
Provided that the two spheres have the same radius r, the pressure of solar radiation too, is inversely proportional to the square of the distance of each sphere from the sun.
Let F₁ and F₂ = gravitational force of the sun on the first and second sphere respectively
P₁ and P₂ = Pressure of solar radiation on the first and second sphere respectively
M = mass of the Sun
m = mass of the spheres, equal masses.
For the first sphere that is distance R from the sun.
F₁ = (GmM/R²)
P₁ = (k/R²)
T₁ = (F₁/P₁) = (GmM/k)
For the second sphere that is at a distance 2R from the sun
F₂ = [GmM/(2R)²] = (GmM/4R²)
P₂ = [k/(2R)²] = (k/4R²)
T₂ = (F₂/P₂) = (GmM/k)
(T₁/T₂) = (GmM/k) ÷ (GmM/k) = 1.0
Hope this Helps!!!
Steps 1 and 2)
The variables are W = work, P = power, and t = time. In this case, W = 9514 joules and P = 347 watts.
The goal is to solve for the unknown time t.
-----------------------
Step 3)
Since we want to solve for the time, and we have known W and P values, we use the equation t = W/P
-----------------------
Step 4)
t = W/P
t = 9514/347
t = 27.4178674351586
t = 27.4 seconds
-----------------------
Step 5)
The lawn mower ran for about 27.4 seconds. I rounded to three sig figs because this was the lower amount of sig figs when comparing 9514 and 347.
-----------------------
Note: we don't use the mass at all