<span> Given the relationship between </span>wavelength<span> and </span>frequency<span> — the </span>higher<span>the </span>frequency<span>, the shorter the </span>wavelength<span> — it follows that short wavelengths are</span>more<span> energetic than long wavelengths.</span>
Gravity affects weight, it does not affect mass. Masses always remain the same. Newton's Second Law of Motion: Force = mass x acceleration The acceleration of an object is: a) directly proportional to the net force acting on the object. ... c) inversely proportional to the mass of the object.
<span>Since P = V x I, a 10% reduction of power would lead to a 10% reduction in the product of voltage and current. What is left is 90% of the original power:
.9P = .9(V x I).
If we assume that current must be the same, then we can regroup the terms on the right-hand side as follows:
.9P = (.9V) x I
In this case, voltage is also reduced by 10% (100% - 90% = 10%).</span>
If the object is moving in a straight line with constant speed,
that's a description of " acceleration = zero ".
Zero acceleration means zero net force on the object.
NO net force is 'required' to keep an object moving in a straight line
at constant speed. In fact, if there IS any net force on the object,
then either its speed or its direction MUST change ... there's no way
to avoid it.
None of this depends on the object's mass, or on the speed or direction
of its motion.