Answer:
subtract
Explanation:
To find the net force of two bodies going in opposite directions, we must subtract the forces this is because they are not additive forces.
- The net force is the resultant force acting on a body.
- This resultant force is the single force that will produce the same effects as all given forces.
- When forces are directed oppositely on a body, they are subtracted from each other to find the net force.
Answer:
See below
Step-by-step explanation:
(a) Shape
The formula for water is H-O-H.
The central O atom has four electron pairs around it. They try to get as far from each other as possible, so they point toward the corners of a tetrahedron.
Only two of the pairs have a hydrogen atom attached, so water has a bent shape. The H-O-H bond angle is about 104°.
(b) Chemical magnet
The O atom has a greater attraction than H for the shared electrons in the O-H bonds, so the electrons spend more time near the O.
This gives the O atom a partial negative charge (pink in the diagram) and the H atoms a partial positive charge (blue).
The water molecule acts like a chemical magnet because its negative end attracts the positive ends of other molecules, while its positive ends attract the negative ends of other molecules.
Answer:
3)The reaction is not at equilibrium and willproceed to the right.
Explanation:
The reaction quotient of an equilibrium reaction measures relative amounts of the products and the reactants present during the course of the reaction at particular point in the time.
It is the ratio of the concentration of the products and the reactants each raised to their stoichiometric coefficients. The concentration of the liquid and the gaseous species does not change and thus is not written in the expression.
Q < Kc , reaction will proceed in forward direction.
Q > Kc , reaction will proceed in backward direction.
Q = Kc , reaction at equilibrium.
Given that:
Q = 
K = 
Since, Q < K , reaction is not at equilibrium and will proceed to right, in forward direction.
Of the many processes involved in the water cycle, the most important are evaporation, transpiration, condensation, precipitation, and runoff. Although the total amount of water within the cycle remains essentially constant, its distribution among the various processes is continually changing.