Answer:
25.97oC
Explanation:
Heat lost by aluminum = heat gained by water
M(Al) x C(Al) x [ Temp(Al) – Temp(Al+H2O) ] = M(H2O) x C(H2O) x [ Temp(Al+H2O) – Temp(H2O) ]
Where M(Al) = 23.5g, C(Al) = specific heat capacity of aluminum = 0.900J/goC, Temp(Al) = 65.9oC, Temp(Al+H2O)= temperature of water and aluminum at equilibrium = ?, M(H2O) = 55.0g, C(H2O)= specific heat capacity of liquid water = 4.186J/goC
Let Temp(Al+H2O) = X
23.5 x 0.900 x (65.9-X) = 55.0 x 4.186 x (X-22.3)
21.15(65.9-X) = 230.23(X-22.3)
1393.785 - 21.15X = 230.23X – 5134.129
230.23X + 21.15X = 1393.785 + 5134.129
251.38X = 6527.909
X = 6527.909/251.38
X = 25.97oC
So, the final temperature of the water and aluminum is = 25.97oC
Answer:
Earth has a magnetic force that is strongest at its core.
The average atomic mass of an element can be determined by multiplying the individual masses of the isotopes with their respective relative abundances, and adding them.
Average atomic mass of Br = 158 amu(0.2569) + 160 amu(0.4999) + 162 amu(0.2431)
Average atomic mass = 159.96 amu
As described in the problem, the relative abundance for Br-79 is 25.69%. This is because 2 atoms of Br is equal to 79*2 = 158 amu. Similarly, the relative abundance of Br-81 is 81*2 = 162, which is 24.31%.
Answer:
An atom of Al which has 13 protons and 10 electrons is Al cation (Al⁺³)
Explanation:
An atom consist of electron, protons and neutrons. Protons and neutrons are present with in nucleus while the electrons are present out side the nucleus.
All these three subatomic particles construct an atom. A neutral atom have equal number of proton and electron. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other.
For example,
Al atom has 13 protons and 13 electrons. The number of positive and negative charge is equal thus it will be neutral atom.
While the atom of Al which have 13 proton and 10 electron is not neutral. The positive charge is greater than negative by 3. Which means 3 electrons are lose by Al atom and form cation "Al⁺³".
Thus an atom of Al which has 13 protons and 10 electrons is Al cation (Al⁺³)
The balanced chemical reaction:
K2SO4 + O2 = 2KO2 + SO2
Assuming that the reaction is complete, all of the potassium sulfate is consumed. We relate the substances using the chemical reaction. We calculate as follows:
7.20 g K2SO4 ( 1 mol / 174.26 g) ( 1 mol O2 / 1 mol K2SO4 ) ( 32 g / 1 mol ) = 1.32 g O2 consumed in the reaction.