Given:
At 25 degrees Celcius:
amount of generic salt AB3 = 0.0260 moles
Volume of solvent = 1.0 L water
Set up a balanced chemical equation:
AB3 =========> A3+ + 3B-
0.0260M 0.0260 0.078
Ksp = [A][B]^3
Ksp = 1.23 x 10^-5<span />
Answer: The pH of an aqueous solution of .25M acetic acid is 2.7
Explanation:

cM 0 0
So dissociation constant will be:

Give c= 0.25 M and
= ?

Putting in the values we get:


![[H^+]=c\times \alpha](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Ctimes%20%5Calpha)
![[H^+]=0.25\times 0.0084=0.0021](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.25%5Ctimes%200.0084%3D0.0021)
Also ![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
![pH=-log[0.0021]=2.7](https://tex.z-dn.net/?f=pH%3D-log%5B0.0021%5D%3D2.7)
Thus pH is 2.7
Answer:

Explanation:
N2(g)+O2(g)⇌2NO(g), 
N2(g)+2H2(g)⇌N2H4(g), 
2H2O(g)⇌2H2(g)+O2(g), 
If we add above reaction we will get:
2N2(g)+2H2O(g)⇌2NO(g)+N2H4(g) Eq (1)
Equilibrium constant for Eq (1) is 
Divide Eq (1) by 2, it will become:
N2(g)+H2O(g)⇌NO(g)+1/2N2H4(g) Eq (2)
Equilibrium constant for Eq (2) is 

2. <span>High pressure and low temperature
Hope this helps </span>