Boyle’s Law illustrates the inverse relationship of volume and pressure. It follows the formula p1V1 = P2V2 , where P1V1 denotes initial pressure and volume and P2V2 denotes values of pressure and volume.
Now, let us work out for what is asked above.
a. if the pressure is doubled
50.0 p = V x 2p
V = 50.0 p / 2p
= 50.0 /2
= 25.0 m^3
b. if the pressure is cut in half
50.0 p = V x p/2
100 p = V x p
V = 100 m^3
c. if the pressure is tripled
50.0 p = V x 3p
V = 50.0 p / 3p
= 50.0 /3
=16.7 m^3
<span> </span>
Magnesium bromide= MgBr2
Potassium chloride= KCl
Answer:
Mass= 2.77g
Explanation:
Applying
P=2.09atm, V= 1.13L, R= 0.082, T= 291K, Mm of N2= 28
PV=nRT
NB
Moles(n) = m/M
PV=m/M×RT
m= PVM/RT
Substitute and Simplify
m= (2.09×1.13×28)/(0.082×291)
m= 2.77g
Yes, electron follows the same path when it absorb and loses energy.
Yes, when an electron moves from a higher orbit to a lower orbit it always follow the same path as it moves from a lower orbit to a higher orbit. When electron absorb energy it has the power to move from lower orbit to higher orbit or energy level.
While on the other hand, when an electron loses that energy, it comes back to its original position from which it moves earlier when it absorb energy so we conclude that electron follows the same path when it absorb and loses energy.
Learn more: brainly.com/question/24962163