Answer:
0.5 s
Explanation:
From the question given above, the following data were obtained:
Number of circle (n) = 2
Time (t) = 1 s
Period =?
Period of a wave is simply defined as the time taken to make one complete oscillation. Mathematically, it can be expressed as:
T = t / n
Whereb
T => is the period
t => is the space time
n => is the number of circle or oscillation.
With the above formula, we can obtain the period of the wave as follow:
Number of circle (n) = 2
Time (t) = 1 s
Period =?
T = t / n
T = 1 / 2
T = 0.5 s
Thus, the period of the wave is 0.5 s
Both have positive charge. In fact, an alpha particle IS a nucleus of a Helium atom.
Answer:
statements <em><u>2, 3, 4, and 7</u></em> are true
Explanation:
Answer:
The solution and the explanation are in the Explanation section.
Explanation:
According to the diagram that is in the attached image, the EFFORT force at point A and the load is at O point. The torque due to weight is:
TA = W * (a * cosθ)
The torque due to effort at C point is:
TC = E * (b * cosθ)
The net torque is equal to 0, we have:
Tnet = 0
W * (a * cosθ) - E * (b * cosθ) = 0

From the figure, you can observe that a/b < 1, thus E < W
During an exothermic reaction; light and heat are released into the environment.
An exothermic reaction is one in which heat is released to the environment. This heat can be physically observed sometimes like in an a combustion reaction.
In an exothermic reaction, the enthalpy of the reactants is greater than the enthalpy of the products.
This heat lost is sometimes felt as the hotness of the vessel in which the reaction has taken place.
In conclusion, light and heat are released into the environment in an exothermic reaction.
Learn more: brainly.com/question/4345448