The magnitude and direction of the electric field in the wire are mathematically given as
![L &=[(v / L) v / m] \hat{i}](https://tex.z-dn.net/?f=L%20%26%3D%5B%28v%20%2F%20L%29%20v%20%2F%20m%5D%20%5Chat%7Bi%7D)
<h3>What is the magnitude and direction of the electric field in the wire?</h3>
Generally, the equation for is mathematically given as
A cylindrical wire that is straight and parallel to the x-axis has the following dimensions: length L, diameter d, resistivity p, diameter d, potential v, and z length. combining elements from both sides
E d 
![\begin{aligned}&-E \int_0^L d x=\int_v^0 d v \\\therefore E \cdot L &=v \\L &=[(v / L) v / m] \hat{i}\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%26-E%20%5Cint_0%5EL%20d%20x%3D%5Cint_v%5E0%20d%20v%20%5C%5C%5Ctherefore%20E%20%5Ccdot%20L%20%26%3Dv%20%5C%5CL%20%26%3D%5B%28v%20%2F%20L%29%20v%20%2F%20m%5D%20%5Chat%7Bi%7D%5Cend%7Baligned%7D)
In conclusion, the magnitude and direction of the electric field in the wire are given as
![L &=[(v / L) v / m]](https://tex.z-dn.net/?f=L%20%26%3D%5B%28v%20%2F%20L%29%20v%20%2F%20m%5D)
Read more about electric fields
brainly.com/question/15800304
#SPJ4
Answer:
101.54m/h
Explanation:
Given that the buses are 5mi apart, and that they are both driving at the same speed of 55m/h, rate of change of distance can be determined using differentiation as;
Let l be the be the distance further away at which they will meet from the current points;
#The speed toward each other.

Hence, the rate at which the distance between the buses is changing when they are 13mi apart is 101.54m/h
- Some people view bacteria specimens with a 100x objective lens in order to see the smallest details.
- Others may use a 10x objective lens for more general purposes, such as examining stained slides or pictures.
- And still others may use a 40x objective lens to gain maximum resolution when viewing images of thick samples.
It is important to choose the appropriate magnification for your needs so that you can properly examine the specimen under study.
<h3>Why is the 100x objective lens necessary to see bacteria?</h3>
- Bacteria must, of course, be viewed at the maximum magnification and resolution possible because to their small size.
- Due to optical restrictions, this is approximately 1000x in a light microscope.
- To improve resolution, the oil immersion method is performed. This calls for a unique 100x objective.
To learn more about bacterial specimen, visit:
brainly.com/question/1412064
#SPJ4
elasticity stretches and can also return to it's normal size ..
Answer:
0.655 m
13.468°C
Explanation:
v = Speed of sound at 20.0°C = 343 m/s (general value)
For one both end open we have the expression

The length of the flute is 0.655 m
Beat frequency is given by

Velocity of the wave is

The temperature is given by

The temperature of the room is 13.468°C