Weight (that's what the 500 N is) = (mass) x (gravity) .
On Earth, gravity = about 9.8 m/s² , so
500 N = (mass) x (9.8 m/s²) .
Divide each side by 9.8 m/s²:
Mass = (500 N) / (9.8 m/s²)
= 51 kg (rounded) .
Answer:
4.16 L
Explanation:
Assuming constant temperature,
At the edge of Typhoon Odessa: P₁ = 1 atm = 1013.3 mbar,
V₁ = 4.0 L
At the center of Typhoon Odessa: P₂ = (1013.3 - 40.0) mbar = 973.3 mbar
V₂ = ? L
For a fixed amount of gas at constant temperature (Boyle's law) : P₁V₁ = P₂V₂
V₂ = V₁ × (P₁/P₂)
V₂= (4.0) × (1013.3/973.3)
V₂= 4.16 L
1.3s
Explanation:
Given parameters:
Height = 1.4m
Gravity on moon = 1.67ms⁻¹
Unknown:
Time for feather to fall = ?
Solution:
To solve this problem, we are going to use one of the motion equation that relates time, gravity and height.
H = ut + 
Sine the body was dropped from rest, initial velocity is zero;
H = height
u = initial velocity
t = time
g = acceleration due to gravity
since u = 0;
H = 
1.4 =
x 1.67 x t²
t = 1.3s
learn more:
Gravity brainly.com/question/10934170
#learnwithBrainly