True because the picture below proves this....
* from which red color is least deviated and violet most.
* Hopefully this helps:) Mark me the brainliest:) !!
<em>∞ 234483279c20∞</em>
Henry will lift 200 N load 20 m up a ladder in 40 s. While the Ricardo will take 400 N load in 80 seconds. So, For Henry to take 400 N load it will take him 80 seconds in two attempts. And,also, he will have to cover 40 m of distance.
600Hz is the driving frequency needed to create a standing wave with five equal segments.
To find the answer, we have to know about the fundamental frequency.
<h3>How to find the driving frequency?</h3>
- The following expression can be used to relate the fundamental frequency to the driving frequency;
f(n) = n * f (1)
where, f(1) denotes the fundamental frequency and the driving frequency f(n).
- The standing wave has four equal segments, hence with n=4 and f(n)=4, we may calculate the fundamental frequency.
f(4) = 4× f (1)
480 = 4× f(1)
f(1) = 480/4 =120Hz.
So, 120Hz is the fundamental frequency.
- To determine the driving frequency necessary to create a standing wave with five equally spaced peaks?
- For, n = 5,
f(n) = n 120Hz,
f(5) = 5×120Hz=600Hz.
Consequently, 600Hz is the driving frequency needed to create a standing wave with five equal segments.
Learn more about the fundamental frequency here:
brainly.com/question/2288944
#SPJ4
Answer:
1. -8.20 m/s²
2. 73.4 m
3. 19.4 m
Explanation:
1. Apply Newton's second law to the car in the y direction.
∑F = ma
N − mg = 0
N = mg
Apply Newton's second law to the car in the x direction.
∑F = ma
-F = ma
-Nμ = ma
-mgμ = ma
a = -gμ
Given μ = 0.837:
a = -(9.8 m/s²) (0.837)
a = -8.20 m/s²
2. Given:
v₀ = 34.7 m/s
v = 0 m/s
a = -8.20 m/s²
Find: Δx
v² = v₀² + 2aΔx
(0 m/s)² = (34.7 m/s)² + 2 (-8.20 m/s²) Δx
Δx = 73.4 m
3. Since your braking distance is the same as the car in front of you, the minimum safe following distance is the distance you travel during your reaction time.
d = v₀t
d = (34.7 m/s) (0.56 s)
d = 19.4 m