<span>node spacing = half of wavelength = 3 cm
velocity = 10 cm/s = freq * wavelength
hench freq = 10/6 = 5/3 = 1.7 hz</span>
Answer:
Compared with the current in the first coil, the current in the second coil is unchanged.
Explanation:
All coils, inductors, chokes and transformers create a magnetic field around themselves consist of an Inductance in series with a Resistance forming an LR Series Circuit.
The steady state of current in the LR circuit is:
I= V/R (1 - e^-Rt/L)
Where I= current
R= Resistance
V= Voltage
Where R/L is the time constant.
For a conducting wire, it has a very small resistance. The time constant will be in microseconds. The current will be in a steady state after few second. The current is independent on the inductance and dependent on the resistance. The length of wire and the resistance here are the same. Therefore, the current remains unchanged.
Answer : The final temperature is, 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of ice = 
= specific heat of water = 
= mass of ice = 50 g
= mass of water = 200 g
= final temperature = ?
= initial temperature of ice = 
= initial temperature of water = 
Now put all the given values in the above formula, we get:


Therefore, the final temperature is, 
<h2>The man have to apply force of 160 N</h2>
Explanation:
The work done to lift the bag of weight mg through height 2.5 m is 400 J
The work done can be found by relation W = mg x h
Thus mg =
=
= 160 N
Therefore the man have to apply the force of 160 N