Given :
The focal length of a concave mirror is 18 cm.
To Find :
The radius of curvature of the concave mirror.
Solution :
We know,

Therefore, the radius of curvature of concave mirror is 36 cm.
Hence, this is the required solution.
This would be a cryogenic intermodal tank. These are used to store and transport HAZMAT gases that require storage under specific pressure and temperature parameters. Cryogenic Intermodal tanks have pressure of 25 Psi or less.
The molecules are continually colliding with each other and with the walls of the container. When a molecule collides with the wall, they exert<span> small force on the wall The </span>pressure exerted<span> by the </span>gas<span> is due to the sum of all these collision forces.The more particles that hit the walls, the higher the </span>pressure<span>.</span>
Answer: 16N
Explanation:
Given that:
mass of box M= 2 kg
Initial speed V1 = 4 m/s
Final speed V2 = 8 m/s
Time taken T= 0.5 s
Average strength of this force F = ?
Now, recall that Force is the rate of change of momentum per unit time
i.e Force = momentum / time
Hence, F = M x (V2 - V1)/T
F = 2kg x (8 m/s - 4 m/s) / 0.5s
F = 2kg x (4 m/s / 0.5s)
F = 2kg x 8 m/s/s)
F = 16N
Thus, the average strength of this
force is 16 newton.
Answer:
<h2>32m/s^2</h2>
Explanation:
We want to find the acceleration based on the given data
Given
distance s=400m
time t= 5s
u= 0m/s since it started from rest
We apply the following expression
s=ut+1/2at^2
substituting we have
400=0*5+1/2*a(5)^2
400=25a/2
cross multiply
25a=400*2
25a=800
divide both sides by 25 we have
a=800/25
a=32m/s^2
The acceleration is 32m/s^2