Answer:
I believe the answer would be A. point x
Answer:
They are 7.4m apart.
Explanation:
Here we have a parabolic motion problem. we need the time taken to land so:

considerating only the movement on Y axis:

Because we have a contant velocity motion on X axis:

and

the distance between them is given by:

Answer: 1339.5 joules
Explanation:
Gravitational potential energy, GPE is the energy possessed by the jumper as he moves against gravity.
Thus, GPE = Mass m x Acceleration due to gravity g x Height h
Since Mass = 67kg
g = 9.8m/s^2
h = 2.04 metres
Thus, GPE = 67kg x 9.8m/s^2 x 2.04m
GPE = 1339.5 joules
Thus, the gravitational potential energy at the highest point is 1339.5 joules
Answer:
M' = μ₀n₁n₂πr₂²
Explanation:
Since r₂ < r₁ the mutual inductance M = N₂Ф₂₁/i₁ where N₂ = number of turns of solenoid 2 = n₂l where n₂ = number of turns per unit length of solenoid 2 and l = length of solenoid, Ф₂₁ = flux in solenoid 2 due to magnetic field in solenoid 1 = B₁A₂ where B₁ = magnetic field due to solenoid 1 = μ₀n₁i₁ where μ₀ = permeability of free space, n₁ = number of turns per unit length of solenoid 1 and i₁ = current in solenoid 1. A₂ = area of solenoid 2 = πr₂² where r₂ = radius of solenoid 2.
So, M = N₂Ф₂₁/i₁
substituting the values of the variables into the equation, we have
M = N₂Ф₂₁/i₁
M = N₂B₁A₂/i₁
M = n₂lμ₀n₁i₁πr₂²/i₁
M = lμ₀n₁n₂πr₂²
So, the mutual inductance per unit length is M' = M/l = μ₀n₁n₂πr₂²
M' = μ₀n₁n₂πr₂²
Atmospheric pressure is caused by the weight of the atmosphere pushing down on itself and on the surface below it.
Pressure is defined as the force acting on an object divided by the area upon witch the force is acting.