1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Helen [10]
3 years ago
11

(i feel so dumb )

Physics
1 answer:
Ne4ueva [31]3 years ago
3 0
The correct answer choice is C.
Hope this helps
You might be interested in
Newton's Law of inertia is sufficient to cause a planet to orbit the sun.<br> O True<br> O False
mario62 [17]
False , inertia is the tendency of a object to not change their state. I have no idea how the orbit around the sun got mixed up in there ....
7 0
3 years ago
A car stops in 130 m. If it has an acceleration of -5 m/s2 what was the cars starting velocity?
Tatiana [17]

Answer:

<u>We are given:</u>

displacement (s) = 130 m

acceleration (a) = -5 m/s²

final velocity (v) = 0 m/s      [the cars 'stops' in 130 m]

initial velocity (u) = u m/s

<u>Solving for initial velocity:</u>

From the third equation of motion:

v² - u² = 2as

replacing the variables

(0)² - (u)² = 2(-5)(130)

-u² = -1300

u² = 1300

u = √1300

u = 36 m/s

8 0
3 years ago
In certain cases, using both the momentum principle and energy principle to analyze a system is useful, as they each can reveal
kramer

Explanation:

The gravitational force equation is the following:

F_G = G * \frac{m_1 m_2}{r^2} \\

Where:

G = Gravitational constant = 6.67408 * 10^{-11} m^3 kg^{-1} s^{-2}

m1 & m2 = the mass of two related objects

r = distance between the two related objects

The problem gives you everything you need to plug into the formula, except for the gravitational constant. Let me know if you need further clarification.

8 0
3 years ago
An airplane flying at an altitude of 6 miles passes directly over a radar antenna. When the airplane is 10 miles away (s = 10),
Novosadov [1.4K]

Answer:

Explanation:

Given

altitude of the Plane h=6\ miles

When Airplane is s=10\ miles away

Distance is changing at the rate of \frac{\mathrm{d} s}{\mathrm{d} t}=290\ mph

From diagram we can write as

h^2+x^2=s^2

differentiate above equation w.r.t time

2h\frac{\mathrm{d} h}{\mathrm{d} t}+2x\frac{\mathrm{d} x}{\mathrm{d} t}=2s\frac{\mathrm{d} s}{\mathrm{d} t}

as altitude is not changing therefore \frac{\mathrm{d} h}{\mathrm{d} t}=0

0+x\frac{\mathrm{d} x}{\mathrm{d} t}=s\frac{\mathrm{d} s}{\mathrm{d} t}

at s=10\ miles\ and\ h=6\ miles

substitute the value we get x=\sqrt{10^2-6^2}=8\ miles

8\times \frac{\mathrm{d} x}{\mathrm{d} t}=10\times 290

\frac{\mathrm{d} x}{\mathrm{d} t}=362.5\ mph

5 0
4 years ago
Suppose that two objects attract each other with a gravitational force of 50N. If the mass
vagabundo [1.1K]

Answer:

112.5 N

Explanation:

50 = GMm/r^2

Let F be the new force of attraction

F/50 = ( G(3M)(3m)/(2r)^2 ) / (GMm/r^2)

[Elimiating G,M,m,r]

F = 112.5 N

7 0
3 years ago
Other questions:
  • the kinetic energy of a bowling ball is 25 (kg-m^2/sec^2). if the mass is 2 kg, the what is the speed of the bowling ball
    7·1 answer
  • How can people control sound?
    7·2 answers
  • How would you write the number 6,500,000,000 in scientific notation?
    5·1 answer
  • A raft is made of 14 logs lashed together. Each log is 42 cm in diameter and a length of 6.4 m. 42% of the log volume is above t
    7·1 answer
  • The greater the amplitude of a wave, the greater its
    8·1 answer
  • What are the starting materials for nuclear fission
    16·2 answers
  • The speed of a moving bullet can be deter-
    15·1 answer
  • Water is more dense in its solid state.
    14·2 answers
  • 8.0 Kg of water is heater from 20°C to 40°C. The specific heat capacity of water is 4200 J/Kg °C. What is the energy supplied to
    11·1 answer
  • Given the mathematical representation of Coulomb’s Law, , where , describe in words the relationship among electric force, charg
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!