False , inertia is the tendency of a object to not change their state. I have no idea how the orbit around the sun got mixed up in there ....
Answer:
<u>We are given:</u>
displacement (s) = 130 m
acceleration (a) = -5 m/s²
final velocity (v) = 0 m/s [the cars 'stops' in 130 m]
initial velocity (u) = u m/s
<u>Solving for initial velocity:</u>
From the third equation of motion:
v² - u² = 2as
replacing the variables
(0)² - (u)² = 2(-5)(130)
-u² = -1300
u² = 1300
u = √1300
u = 36 m/s
Explanation:
The gravitational force equation is the following:

Where:
G = Gravitational constant = 
m1 & m2 = the mass of two related objects
r = distance between the two related objects
The problem gives you everything you need to plug into the formula, except for the gravitational constant. Let me know if you need further clarification.
Answer:
Explanation:
Given
altitude of the Plane 
When Airplane is
away
Distance is changing at the rate of 
From diagram we can write as

differentiate above equation w.r.t time

as altitude is not changing therefore 

at 
substitute the value we get 

Answer:
112.5 N
Explanation:
50 = GMm/r^2
Let F be the new force of attraction
F/50 = ( G(3M)(3m)/(2r)^2 ) / (GMm/r^2)
[Elimiating G,M,m,r]
F = 112.5 N