Let the key is free falling, therefore from equation of motion
.
Take initial velocity, u=0, so
.
As velocity moves with constant velocity of 3.5 m/s, therefore we can use formula
From above substituting t,
.
Now substituting all the given values and g = 9.8 m/s^2, we get
.
Thus, the distance the boat was from the point of impact when the key was released is 10.60 m.
Answer:Force is to the right
Explanation: because the right side has 75N compared to the 25N on the left.
Put the object or material on a scale to figure out<span> its mass. 3. Divide the mass by the volume to </span>figure out the density<span> (p = m / v). You may also need to know </span>how to calculate<span> the volume of a </span>solid s<span>o use the formula</span>
Answer:
Answer:
28.025 Nm
Explanation:
Angular acceleration, α = 29.5 rad/s^2
oment of inertia, I = 0.95 kg m^2
The torque is defined as
τ = I x α
τ = 0.95 x 29.5
τ = 28.025 Nm
Thus, the torque is 28.025 Nm.
Explanation:
Answer: The correct answer is option C.
Explanation:
Weight = Mass × Acceleration
Let the mass of the space probe be m
Acceleration due to gravity on the earth = g
Weight of the space probe on earth = W
Acceleration due to gravity on the Jupiter = g' = 2.5g
Weight of the space probe on earth = W'
The weight of the space probe on the Jupiter will be 2.5 times the weight of the space probe on earth.
Hence, the correct answer is option C.