1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
swat32
3 years ago
14

51.Shoveling snow can be extremely taxing because the arms have such a low efficiency in this activity. Suppose a person shoveli

ng a footpath metabolizes food at the rate of 800 W. (a) What is her useful power output? (b) How long will it take her to lift 3000 kg of snow 1.20 m? (This could be the amount of heavy snow on 20 m of footpath.) (c) How much waste heat transfer in kilojoules will she generate in the process?
Physics
1 answer:
Komok [63]3 years ago
3 0

Complete question is;

Shoveling snow can be extremely taxing since the arms have such a low efficiency in this activity. Suppose a person shoveling a sidewalk metabolizes food at the rate of 800 W. (The efficiency of a person shoveling is 3%.)

(a) What is her useful power output? (b) How long will it take her to lift 3000 kg of snow 1.20 m? (This could be the amount of heavy snow on 20 m of footpath.) (c) How much waste heat transfer in kilojoules will she generate in the process?

Answer:

A) P_out = 24 W

B) t = 1470 s

C) Q = 1140.72 KJ

Explanation:

We are given;

Input Power; P_in = 800 W

Efficiency; η = 3% = 0.03

A) Formula for efficiency is;

η = P_out/P_in

Making P_out the subject, we have;

P_out = η•P_in

P_out = 0.03 × 800

P_out = 24 W

B) We know that;

Power = work done/time taken

Thus;

P_out = mgh/t

We are given;

m = 3000 kg

h = 1.20 m

Thus, time is;

t = (3000 × 9.8 × 1.2)/24

t = 1470 s

C) amount of heat wasted is calculated from;

Q = (P_in - P_out)t

Q = (800 - 24) × 1470

Q = 1,140,720 J

Q = 1140.72 KJ

You might be interested in
The kinetic energy of a rotating body is generally written as K=12Iω2, where I is the moment of inertia. Find the moment of iner
stira [4]

Answer:

See explanation

Explanation:

We have a mass m revolving around an axis with an angular speed \omega, the distance from the axis is r. We are given:

\omega = 10 [rad/s]\\r=0.5 [m]\\m=13[Kg]

and also the formula which states that the kinetic rotational energy of a body is:

K =\frac{1}{2}I\omega^2.

Now we use the kinetic energy formula

K =\frac{1}{2}mv^2

where v is the tangential velocity of the particle. Tangential velocity is related to angular velocity by:

v=\omega r

After replacing in the previous equation we get:

K =\frac{1}{2}m(\omega r)^2

now we have the following:

K =\frac{1}{2}m(\omega r)^2 =\frac{1}{2}Iw^2

therefore:

mr^2=I

then the moment of inertia will be:

I = 13*(0.5)^2=3.25 [Kg*m^2]

3 0
3 years ago
__ is the second most abundant element in Earth’s crust. It is found in ___, and ___; and in _ which is used to make pottery.
lianna [129]

Answer:

silicon is the second most abundant element in Earth’s crust. It is found in the sun and stars; and in clay which is used to make pottery.

Explanation:

6 0
3 years ago
In an RLC series circuit that includes a source of alternating current operating at fixed frequency and voltage, the resistance
maw [93]

Answer:

Capacitive Reactance is 4 times of resistance

Solution:

As per the question:

R = X_{L} = j\omega L = 2\pi fL

where

R = resistance

X_{L} = Inductive Reactance

f = fixed frequency

Now,

For a parallel plate capacitor, capacitance, C:

C = \frac{\epsilon_{o}A}{x}

where

x = separation between the parallel plates

Thus

C ∝ \frac{1}{x}

Now, if the distance reduces to one-third:

Capacitance becomes 3 times of the initial capacitace, i.e., x' = 3x, then C' = 3C and hence Current, I becomes 3I.

Also,

Z = \sqrt{R^{2} + (X_{L} - X_{C})^{2}}

Also,

Z ∝ I

Therefore,

\frac{Z}{I} = \frac{Z'}{I'}

\frac{\sqrt{R^{2} + (R - X_{C})^{2}}}{3I} = \frac{\sqrt{R^{2} + (R - \frac{X_{C}}{3})^{2}}}{I}

{R^{2} + (R - X_{C})^{2}} = 9({R^{2} + (R - \frac{X_{C}}{3})^{2}})

{R^{2} + R^{2} + X_{C}^{2} - 2RX_{C} = 9({R^{2} + R^{2} + \frac{X_{C}^{2}}{9} - 2RX_{C})

Solving the above eqn:

X_{C} = 4R

6 0
3 years ago
A force of 6N and another of 8N can be applied together to produce the effect of how much newtons?
const2013 [10]
12N because you are just adding those two up on the same side
5 0
3 years ago
Read 2 more answers
A block of mass M is connected by a string and pulley to a hanging mass m. The coefficient of kinetic friction between block M a
aleksklad [387]

Answer:

a)  y = 0.98 t², t=1s y= 0.98 m,  

b) he two blocks must move the same distance

c) v = 1.96 m / s,  d)  a = -1.96 m / s², e)  x = 0.98 m

Explanation:

For this exercise we can use Newton's second law

Big Block

Y axis

             N-W = 0

             N = M g

X axis

             T- fr = Ma

the friction force has the expression

             fr = μ N

             fr = μ Mg

small block

             w- T = m a

             

we write the system of equations

             T - fr = M a

             mg - T = m a

we add and resolved

             mg-  μ Mg = (M + m) a

             a = g \ \frac{m - \mu M}{m+M}

             a = 9.8 \ \frac{10- 0.2 \ 20}{ 10 \ +\ 20}

             a = 9.8 (6/30)

             a = 1.96 m / s²

a) now we can use the kinematic relations

             y = v₀ t + ½ a t²

the blocks come out of rest so their initial velocity is zero

             y = ½ a t²

             y = ½ 1.96 t²

             y = 0.98 t²

for t = 1s y = 0.98 m

       t = 2s y = 1.96 m

b) Time is a scale that is the same for the entire system, the question should be oriented to how far the big block will move.

As the curda is in tension the two blocks must move the same distance

c) the velocity of the block M

           v = vo + a t

           v = 0 + 1.96 t

for t = 1 s v = 1.96 m / s

       t = 2 s v = 3.92 m / s

d) the deceleration if the chain is cut

when removing the chain the tension becomes zero

           -fr = M a

          - μ M g = M a

          a = - μ g

          a = - 0.2 9.8

          a = -1.96 m / s²

e) the distance to stop the block is

         v² = vo² - 2 a x

        0 = vo² - 2a x

        x = vo² / 2a

        x = 1.96² / 2 1.96

        x = 0.98 m

the time to travel this distance is

        v = vo - a t

        t = vo / a

        t = 1.96 /1.96

        t = 1 s

3 0
3 years ago
Other questions:
  • Suppose the sun were to suddenly disappear. what would happen to the orbital path of earth? it would stay the same, but the eart
    13·2 answers
  • A wire of diameter 1 mm has a resistance of 0.5 . What is the resistance of another wire of the same material and the same leng
    14·1 answer
  • Jane has a mass of 40 kg. She pushes on a 50 kg rock with a force of 100 N. What force does the rock exert on Jane?
    15·1 answer
  • There is a current I flowing in a clockwise direction in a square loop of wire that is in the plane of the paper. If the magneti
    15·1 answer
  • How do you use the SI conversion tool to perfom metric conversions?
    15·1 answer
  • A truck covers 40.0 m in 7.10 s while uniformly slowing down to a final velocity of 2.05 m/s.
    8·1 answer
  • If you were to measure of liters of gas trapped in a bottle, which of the following would you be describing?
    14·2 answers
  • If the density of an object is 30 g/cm3 and its volume is 10 cm3, what is its mass in grams?
    9·1 answer
  • A 400-kg space probe has a weight of 3,560 N on one of the above planets. According to the table
    7·1 answer
  • What is the momentum of an airplane with a mass of 360,000 kg moving<br> down the runway at 1.5 m/s?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!