Answer:
The First option, b(4*3) is correct
The Second option, 3(3b+b) is correct
The Fourth option, 4b(3) is correct
Step-by-step explanation:
<u><em>To find what other expressions are equal, all we do is </em></u><u><em>find what the original is equal to and the options are as well.</em></u>
<u><em>To find the value of 3(4b) all we do is </em></u><u><em>distibute the 3 into 4b</em></u><u><em>. We do this by </em></u><u><em>multiplying</em></u><u><em>.</em></u>
<u><em>3 * 4b = 12b</em></u>
<u><em></em></u>
<u><em>Now that we know what the original is equal to, we must </em></u><u><em>find what the options are equal to</em></u><u><em>: </em></u>
<u><em>1.</em></u>
<u><em>b(4 * 3)</em></u>
<u><em>4 times 3 is 12.</em></u>
<u><em>b times 12 is 12b.</em></u>
<u><em>12b is 12b meaning the </em></u><u><em>first option, b(4 * 3) is correct.</em></u>
<u><em>2.</em></u>
<u><em>3(3b + b)</em></u>
<u><em>3b plus b would be 4b.</em></u>
<u><em>3 times 4b is 12b.</em></u>
<u><em>12b is 12b meaning the </em></u><u><em>second option, 3(3b + b) is correct.</em></u>
<u><em>3. </em></u>
<u><em>4b + 3</em></u>
<u><em>Nothing further can be done to this since 4b and 3 can't become one variable.</em></u>
<u><em>4b + 3 is not 12b meaning the </em></u><u><em>third option, 4b + 3 is not correct</em></u>
<u><em>4.</em></u>
<u><em>4b(3)</em></u>
<u><em>4b times 3 is 12b</em></u>
<u><em>12b is 12b meaning the </em></u><u><em>fourth option, 4b(3) is correct</em></u>