Answer:
Option D is Correct answer
Answer:
(NH₄)₃PO₄ (l) + Al(NO₃)₃(l) -----------→ AlPO₄(l) + 3NH₄NO₃(l)
Explanation:
Data Give:
Reaction between ammonium phosphate solution and solution of aluminum nitrate
- Write a balanced chemical equation
Details:
To write a balanced chemical equation we have to know formula units of compounds or molecules
Formula units
ammonium phosphate : (NH₄)₃PO₄
aluminum nitrate: Al(NO₃)₃
ammonium nitrate: NH₄NO₃
Now to write a chemical equation
- we have to write the chemical formulas or formula unit of each compound
- write the reactant on left side of the arrow
- write the product on the right side of the arrow
- put a plus sign in 2 reactants and products on each side of the arrow
- balance the equation by putting coefficient with compound formula
- write the phase symbols on the right corner of the compound formula in brackets
So the Reaction will be
(NH₄)₃PO₄ + Al(NO₃)₃ -----------→ AlPO₄ + NH₄NO₃
Now balance the Chemical equation
(NH₄)₃PO₄ + Al(NO₃)₃ -----------→ AlPO₄ + 3NH₄NO₃
Now write the phase Symbols
(NH₄)₃PO₄ (l) + Al(NO₃)₃(l) -----------→ AlPO₄(l) + 3NH₄NO₃(l)
all compounds in the reaction are in liquid form and soluble in water
*** Note:
There is no aluminum nitrite in chemicals formulas
Also ammonium nitrite can not be used in pure isolated form due to its highly instability
Molarity is the molar concentration of the solute dissolved in a volume of a solution. The molarity of the solution prepared by dissolving barium chloride will be 0.085 M.
<h3>What is molarity?</h3>
Molarity is the ratio of the moles of the solute to that of the volume of the solution in Liters. It can be given as,

Here, moles of the barium chloride can be given by the mass and the molar mass and volume is given as 0.450 L.
Substituting values in the equation:

Therefore, 0.085 M barium chloride is the molar concentration.
Learn more about molarity here:
brainly.com/question/26873446
Answer:
The lock-and-key model:
c. Enzyme active site has a rigid structure complementary
The induced-fit model:
a. Enzyme conformation changes when it binds the substrate so the active site fits the substrate.
Common to both The lock-and-key model and The induced-fit model:
b. Substrate binds to the enzyme at the active site, forming an enzyme-substrate complex.
d. Substrate binds to the enzyme through non-covalent interactions
Explanation:
Generally, the catalytic power of enzymes are due to transient covalent bonds formed between an enzyme's catalytic functional group and a substrate as well as non-covalent interactions between substrate and enzyme which lowers the activation energy of the reaction. This applies to both the lock-and-key model as well as induced-fit mode of enzyme catalysis.
The lock and key model of enzyme catalysis and specificity proposes that enzymes are structurally complementary to their substrates such that they fit like a lock and key. This complementary nature of the enzyme and its substrates ensures that only a substrate that is complementary to the enzyme's active site can bind to it for catalysis to proceed. this is known as the specificity of an enzyme to a particular substrate.
The induced-fit mode proposes that binding of substrate to the active site of an enzyme induces conformational changes in the enzyme which better positions various functional groups on the enzyme into the proper position to catalyse the reaction.
When fossil fuels are burned for energy, carbon that was sequestered underground is being released again into the atmosphere.