1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shkiper50 [21]
2 years ago
10

give an example of how the law of inertia is demonstrated (a) for moving objects and (b) for objects at rest

Physics
1 answer:
lakkis [162]2 years ago
6 0

Answer:

Both

Explanation:

Both of them are part of newtons laws of motion

You might be interested in
65. If Jill was traveling at 300 miles in 4 hours due South what was his velocity in miles per second,
iris [78.8K]
Correct answer is A. Divide 300 by 75
5 0
2 years ago
Chose a substance your familiar with. What are it’s physical and chemical properties
finlep [7]
So, physical properties are what we can detect with our basic 5 senses or measuring tools, and the things that, when changed, dont actually change the chemical properties (like atoms and molecules). Lets take wood for an example: its brown, its solid, it can be big or small, it has a taste and smell, its boiling, freezing or melting point...

Chemical properties, on the other hand, are the things we can change with, for example, experiments and tools. Does it burn? Can it rust/oxidize? How does it react with other chemicals? Is it radioactive, or toxic? All of these are chemical properties you can probably answer.
6 0
3 years ago
2 (a) What is the distance from the Sun to Earth in terms of solar radii? Earth radii?
ohaa [14]

a) Distance Earth-Sun is 215.5 solar radii and 23,548 Earth radii

b)

Mercury: 1.7 days

Mars: 6.5 days

Jupiter: 21.7 days

Uranus: 86.8 days

Neptune: 130.2 days

c) 1.3\cdot 10^6 Earths can fit inside the Sun

Explanation:

a)

The distance between the Sun and the Earth is 150 millions km, so

d=150\cdot 10^6 km = 1.50\cdot 10^{11} m

The solar radius is

r_s = 6.96\cdot 10^5 km = 6.96\cdot 10^8 m

Therefore the distance Earth-Sun in solar radii is

d_s = \frac{d}{r_s}=\frac{1.50\cdot 10^{11}}{6.96\cdot 10^8}=215.5

The Earth radius is

r_e = 6.37\cdot 10^6 m

Therefore the distance Earth-Sun in Earth radii is

d_e=\frac{d}{r_e}=\frac{1.50\cdot 10^{11}}{6.37\cdot 10^6}=23,548

b)

The speed of the solar wind is

v=400 km/s = 4\cdot 10^5 m/s

The value of 1 AU (Astronomical Unit) is

1 AU = 1.50\cdot 10^{11}m (distance Earth-Sun)

The distance between the Sun and Mercury is:

d=0.4 AU \cdot 1.50\cdot 10^{11}=6.0\cdot 10^{10} m

So the time taken by a parcel of solar wind to reach Mercury is:

t=\frac{d}{v}=\frac{6.0\cdot 10^{10}}{4.0\cdot 10^5}=150,000 s

Converting into days (1d=86400 s),

t=\frac{150,000}{86400}=1.7 d

The distance between the Sun and Mars is:

d=1.5 AU \cdot 1.50\cdot 10^{11}=2.25\cdot 10^{11} m

So the time taken by a parcel of solar wind to reach Mars is:

t=\frac{d}{v}=\frac{2.25\cdot 10^{11}}{4.0\cdot 10^5}=562,500 s

Converting into days (1d=86400 s),

t=\frac{562,500}{86400}=6.5 d

The distance between the Sun and Jupiter is:

d=5 AU \cdot 1.50\cdot 10^{11}=7.5\cdot 10^{11} m

So the time taken by a parcel of solar wind to reach Jupiter is:

t=\frac{d}{v}=\frac{7.5\cdot 10^{11}}{4.0\cdot 10^5}=1.88 \cdot 10^6 s

Converting into days (1d=86400 s),

t=\frac{1.88\cdot 10^6}{86400}=21.7 d

The distance between the Sun and Uranus is:

d=20 AU \cdot 1.50\cdot 10^{11}=3.0\cdot 10^{12} m

So the time taken by a parcel of solar wind to reach Uranus is:

t=\frac{d}{v}=\frac{3.0\cdot 10^{12}}{4.0\cdot 10^5}=7.5 \cdot 10^6 s

Converting into days (1d=86400 s),

t=\frac{7.5\cdot 10^6}{86400}=86.8 d

The distance between the Sun and Neptune is:

d=30 AU \cdot 1.50\cdot 10^{11}=4.5\cdot 10^{12} m

So the time taken by a parcel of solar wind to reach Neptune is:

t=\frac{d}{v}=\frac{4.5\cdot 10^{12}}{4.0\cdot 10^5}=11.3 \cdot 10^6 s

Converting into days (1d=86400 s),

t=\frac{11.3\cdot 10^6}{86400}=130.2 d

c)

As we said in part a), we have:

r_e = 6.37\cdot 10^6 m (radius of the Earth)

r_s=6.96\cdot 10^8 m (radius of the Sun)

So the volume of the Earth can be calculated as:

V_e=\frac{4}{3}\pi r_e^3 = \frac{4}{3}\pi (6.37\cdot 10^6)^3=1.08\cdot 10^{21} m^3

While the volume of the Sun is

V_s=\frac{4}{3}\pi r_s^3 = \frac{4}{3}\pi (6.96\cdot 10^8)^3=1.41\cdot 10^{27} m^3

Therefore, the number of Earths that could fit inside the Sun is:

\frac{V_s}{V_e}=\frac{1.41\cdot 10^{27}}{1.08\cdot 10^{21}}=1.3\cdot 10^6

Learn more about the Solar System:

brainly.com/question/2887352

brainly.com/question/10934170

#LearnwithBrainly

6 0
3 years ago
In your daily life you come across a range of motion in which acceleration is in the direction of motion
irakobra [83]
That makes no sense to me somehow
3 0
3 years ago
The period of rotation of Mars is 1 day and 37 minutes. Determine its frequency of rotation in Hertz.
Sholpan [36]

The frequency of rotation of Mars is 0.0000113 Hertz.

<u>Given the following data:</u>

  • Period = 1 day and 37 minutes.

To find the frequency of rotation in Hertz:

First of all, we would convert the the value of period in days and minutes to seconds because the period of oscillation of a physical object is measured in seconds.

<u>Conversion:</u>

1 day = 24 hours

24 hours to minutes = 60 × 24 = 1440 minutes

1440 + 37 = 1477 \; minutes

1 minute = 60 seconds

1477 minute = X seconds

Cross-multiplying, we have:

X = 60 × 1477

X = 88620 seconds

Now, we can find the frequency of rotation of Mars by using the formula:

Frequency = \frac{1}{Period}\\\\Frequency = \frac{1}{88620}

<em>Frequency </em><em>of rotation</em> = <em>0.0000113 Hertz</em>

Therefore, the frequency of rotation of Mars is 0.0000113 Hertz.

Read more: brainly.com/question/14708169

8 0
2 years ago
Other questions:
  • A hunter points his rifle directly at a coconut that she wishes to shoot off a tree. It so happens that the coconut falls from t
    13·1 answer
  • Which of these activities might involve a chemist? Question options: measuring the motions of a planet determining the fat conte
    13·2 answers
  • An atom of carbon 14 has_______ protons and________neutrons. Fill in the blanks.
    13·2 answers
  • You throw a football straight up. Air resistance can be neglected. (a) When the football is 4.00 m above where it left your hand
    9·1 answer
  • A proton is released from rest in a uniform electric field. After the proton has traveled a distance of 10.0 cm, its speed is 1.
    13·1 answer
  • All recorded measurements require a number followed by a _______ .
    5·1 answer
  • A spring of spring constant k=8.25N/m is displaced from equilibrium by a distance of 0.150m. What is the stored energy in the fo
    14·1 answer
  • Explain the process of <br>anomalous expansion of water​
    12·1 answer
  • 3. A 6 kg block moving to the right at 4 m/s collides with and sticks to a stationary block of unknown mass. If the two blocks m
    5·1 answer
  • if 16,700 j of work is done to shoot the human cannonball down a 30.5m barrel,then how much force is applied to the person to fi
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!