Answer:
the soild material is allowe to settle into a sludge layer the remaining waste water undergoes a secondart treatment that uses bacteria to break down organic matter
treat water is left to sit while particles settle out, with settle d particles being added to sluudge,
water is disinfeted
Explanation:
Use the Inverse square law, Intensity (I)<span> of a light </span>is inversely proportional to the square of the distance(d).
I=1/(d*d)
Let Intensity for lamp 1 is L1 distance be D1 so on, L2 D2 for Intensity for lamp 2 and its distance.
L1/L2=(D2*D2)/(D1*D1)
L1/15=(200*200)/(400*400)
L1=15*0.25
L1=3.75 <span>candela</span>
This is another one of those muddy misleading questions, followed by
a muddy group of choices from which an answer must be selected.
a). is absurd. There's no such thing as a "balanced force", only
a balanced group of forces.
b). is probably the choice the question is aiming for.
c). is not so. The engines of an airplane do plenty of work lifting the plane
off the ground, although the force of the engines is never directed upward.
d). is really awkward. The object's motion is almost never the cause of the force.
The force is almost always the cause of the object's motion.
Now for the big 800-lb gorilla in the room: No moving object needs to be involved
in order for energy to be flowing or work to be getting done.
-- A radio wave radiates through space. Straighten out a wire coat-hanger and
stick it up in the air where the radio wave can pass by it. Electrical current flows
through the wire, and you can drain the electrical energy out the bottom of it.
-- A light bulb is shining. Some distance away, something it's shining on
gets warm, because of the heat energy that has shot across to it from the
light bulb and soaked into it.
-- A lightning bolt jumps from the ground to a passing cloud. Or, if you feel
more comfortable with it, a lightning bolt jumps from a cloud to the ground.
It doesn't matter. Either way, there's enough energy splashing around to
ignite houses, zap TVs and computers, melt concrete, vaporize water, and
light up a city. Although nothing is moving.
Answer:
1176.01 °C
Explanation:
Using Ohm's law,
V = IR................. Equation 1
Where V = Voltage, I = current, R = Resistance when the bulb is on
make R the subject of the equation
R = V/I.................. Equation 2
R = 4.3/0.32
R = 13.4375 Ω
Using
R = R'(1+αΔθ)............................. Equation 3
Where R' = Resistance of the bulb at 20°, α = Temperature coefficient of resistivity, Δθ = change in temperature
make Δθ the subject of the equation
Δθ = (R-R')/αR'.................. Equation 4
Given: R = 13.4375 Ω, R' = 1.6 Ω, α = 6.4×10⁻³ K⁻¹
Substitute into equation 4
Δθ = (13.4375-1.6)/(1.6×0.0064)
Δθ = 11.8375/0.01024
Δθ = 1156.01 °C
But,
Δθ = T₂-T₁
T₂ = T₁+Δθ
Where T₂ and T₁ = Final and initial temperature respectively.
T₂ = 20+1156.01
T₂ = 1176.01 °C
So you would use the equation Q=cmΔT, where c is the specific heat, m is the mass, and ΔT is change in temperature. Q, or heat added, would equal (0.187)(2.5)(350-45), which simplifies to 142.5875 btu.