1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Colt1911 [192]
3 years ago
7

La resultante de dos fuerzas perpendiculares aplicadas a un mismo cuerpo es 11.18 N y el módulo de una de ellas es de 10 N. ¿Cuá

l es el módulo de la otra?
Physics
1 answer:
Dmitrij [34]3 years ago
3 0

Answer:

English?

Explanation:

You might be interested in
Solve for the unknown in each of these circuits
Tamiku [17]

<u> Ohms law: </u> This law relates voltage difference between two points. Mathematically, the law states that V=IR;

                Where

                          V = voltage difference ; in volts

                          I = Current ; in Amperes

                          R = Resistance ; in ohms

<u>1. Answer : </u> given that R = 10 ; V= 12 V ;  I = ?

From ohms law,    I = V/R

                                = 12/10

                                = 1.2 Amp.

<u>2. Answer:</u>  given that R = 10 ; V= ? ;  I = 5

From ohms law,    V = IR

                                 = 10×5 = 50 V

<u>3 . Answer:</u>  given that R = ? ; V= 120 ;  I = 5

From ohms law,    R =  V/I

                                 = 120/5

                                 = 24 Ω

<u>4 . Answer:</u>  given that R = ? ; V= 10 ;  I = 20

From ohms law,    R =  V/I

                                 = 10/20

                                 = 0.5 Ω

<u>5 . Answer:</u>  given that R = 480 ; V= 24 ;  I = ?

From ohms law,  I =  V/R

                              = 24/480

                              = 0.05 A

<u>6. Answer:</u>  given that R = 150 ; V= ? ;  I = 1

From ohms law,  V = IR

                               = 1 × 150

                               = 150 V


6 0
4 years ago
Three guns are aimed at the center of a circle, and each fires a bullet simultaneously. The directions in which they fire are 12
ikadub [295]

Answer:

The unknown mass of the bullet is  m1=3.751x10^{-3} kg

Explanation:

According to Newton's laws of motion, when a net external force acts on a body of mass  <u><em>m</em></u> , it results in change in momentum of the body and is given by:

F=\frac{P}{dt}

Where:

P

is the linear momentum of the body

As a consequence, when there are no external forces acting on the body the total momentum remains conserved i.e.

Given:

m_{2}=5.79x10^{-3}kg  \\m_{3}=5.79x10^{-3}kg\\v_{2}=v_{3}=392 \frac{m}{s}\\

For momentum along the y-direction to be zero, it is achieved when the equal masses are moving at angles of  

θ1=180°, θ2=60°, θ3=-60°

Therefore, from conservation of momentum along x - direction:

m_{1}*v_{1}*cos(180)+m_{2}*v_{2}*cos(60)+m_{3}*v_{3}*cos(-60)=0\\m_{1}*605\frac{m}{s}*cos(180)+5.79x10^{-3}kg *392\frac{m}{s}*cos(60)+5.79x10^{-3}kg*392\frac{m}{s}*cos(-60)=0\\

-m_{1}*605+5.79x10^{-3}kg*196\frac{m}{s}+5.79x10^{-3}kg*196\frac{m}{s}=0\\m_{1}*605kg= 2.26968\frac{kg*m}{s}\\m_{1}=3.75 x10^{-3} kg

3 0
3 years ago
A source at rest emits light of wavelength 500 nm. When it is moving at 0.90c toward an observer, the observer detects light of
Vesna [10]

Answer:

The observer detects light of wavelength is 115 nm.

(b) is correct option

Explanation:

Given that,

Wavelength of source = 500 nm

Velocity = 0.90 c

We need to calculate the wavelength of observer

Using Doppler effect

\lambda_{o}=\sqrt{\dfrac{1-\beta}{1+\beta}}\lambda_{s}

Where, \beta=\dfrac{c}{v}

\lambda_{o}=\sqrt{\dfrac{c-0.90c}{c+0.90c}}\times500\times10^{-9}

\lambda_{o}=115\ nm

Hence, The observer detects light of wavelength is 115 nm.

8 0
4 years ago
Traveling 221 miles from Boston Back Bay Station to NYC Penn Station takes 3 hours
Nostrana [21]

Answer:

Approximately 116\; \text{miles} for the train from Boston to NYC Penn Station.

Approximately 105\; \text{miles} for the train from NYC Penn Station to Boston.

Explanation:

Convert minutes to hours:

\begin{aligned}t(\text{BOS $\to$ NYC}) &= 3\; {\text{hour}} + 40\; \text{minute} \times \frac{1\; {\text{hour}}}{60\; \text{minute}} \\ &=\left(3 + \frac{2}{3}\right)\; \text{hour}\\ &= \frac{11}{3}\; \text{hour} \end{aligned}.

\begin{aligned}t(\text{NYC $\to$ BOS}) &= 4\; {\text{hour}} + 5\; \text{minute} \times \frac{1\; {\text{hour}}}{60\; \text{minute}} \\ &= \frac{49}{15}\; \text{hour} \end{aligned}.

Calculate average speed of each train:

\begin{aligned}v(\text{BOS $\to$ NYC}) &= \frac{s}{t}\\ &= \frac{221\; \text{mile}}{\displaystyle \frac{11}{3}\; \text{hour}} \\ &= \frac{663}{11}\; \text{mile} \cdot \text{hour}^{-1}\end{aligned}.

\begin{aligned}v(\text{NYC $\to$ BOS}) &= \frac{s}{t}\\ &= \frac{221\; \text{mile}}{\displaystyle \frac{49}{15}\; \text{hour}} \\ &= \frac{2652}{49}\; \text{mile} \cdot \text{hour}^{-1}\end{aligned}

Assume that it takes a time period of t for the trains to pass by each other after departure. Distance each train travelled would be:

s(\text{NYC $\to$ BOS}) = v(\text{NYC $\to$ BOS})\, t.

s(\text{BOS $\to$ NYC}) = v(\text{BOS $\to$ NYC})\, t.

Since the trains have just passed by each other, the sum of the two distances should be equal to the distance between the stations:

v(\text{NYC $\to$ BOS})\, t + v(\text{BOS $\to$ NYC})\, t = 221\; \text{mile}.

Rearrange and solve for t:

(v(\text{NYC $\to$ BOS}) + v(\text{BOS $\to$ NYC}))\, t = 221\; \text{mile}.

\begin{aligned}t &= \frac{221\; \text{mile}}{v(\text{NYC $\to$ BOS}) + v(\text{BOS $\to$ NYC})} \\ &= \frac{221\; \text{mile}}{\displaystyle \frac{663}{11}\; \text{mile} \cdot \text{hour}^{-1} + \frac{2652}{49}\; \text{mile} \cdot \text{hour}^{-1}} \\ &= \frac{539}{279}\; \text{hour}\end{aligned}.

Distance each train travelled in t = (539 / 279)\; \text{hour}:

\begin{aligned}s(\text{BOS $\to$ NYC}) &= v\, t \\ &= \frac{663}{11}\; \text{mile} \cdot \text{hour}^{-1} \times \frac{539}{279}\; \text{hour} \\ &\approx 116\; \text{mile}\end{aligned}.

\begin{aligned}s(\text{NYC $\to$ BOS}) &= v\, t \\ &= \frac{2652}{49}\; \text{mile} \cdot \text{hour}^{-1} \times \frac{539}{279}\; \text{hour} \\ &\approx 105\; \text{mile} \end{aligned}.

8 0
2 years ago
Which ball moved at the same speed as Ball 3?
Luden [163]

Answer:

you forgot to attach the image

3 0
3 years ago
Read 2 more answers
Other questions:
  • How much energy Δ???? would be required to move the Moon from its present orbit around Earth to a location that is twice as far
    8·1 answer
  • Help with the two questions above? Correct answers?
    7·1 answer
  • When you are traveling in your car at highway speed, the momentum of a bug is suddenly changed as it splatters into your windshi
    12·1 answer
  • A 0.20 kg particle moves along the x axis under the influence of a stationary object. The potential energy is given by U(x) = 8x
    13·1 answer
  • Which statement will be true if you increase the frequency of a periodic wave?
    13·1 answer
  • Air at the poles tends to flow close to the surface toward the equator. What can you conclude about the characteristics of this
    15·1 answer
  • Does a Magnesium atom gains 2 electrons in an ionic compound?
    10·1 answer
  • When the displacement of a mass on a spring in simple harmonic motion is A/2 from the equilibrium position, what fraction of the
    5·1 answer
  • Which of the following CANNOT be
    10·2 answers
  • Which benefit outweighs the risks in the technological design of headphones?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!