Answer:
400 Ns
Explanation:
Impulse = Change in momentum
i.e I = ΔP
So that,
Impulse experienced by Max = Change in Max's momentum
Change in Max's momentum = m(v - u)
Where m is the mass, v is the velocity after collision, and u is the velocity before collision.
m = 100.0 kg, v = 2.0 m/s, u = 6.0 m/s
Change in Max's momentum = 100 x (2 -6)
= -400 kg m/s
The negative sign shows that the change in momentum was against his direction of motion.
Impulse experienced by Max = 400 Ns.
Thus,
Max experienced an impulse of 400 Ns as a result of the collision.
Answer:
7.5 m/s²
Explanation:
Given:
v₀ = 0 m/s
v = 30 m/s
t = 4 s
Find: a
v = at + v₀
(30 m/s) = a (4 s) + (0 m/s)
a = 7.5 m/s²
Answer:
a) W = 6.75 J and b) v = 3.87 m / s
Explanation:
a) In the problem the force is nonlinear and they ask us for work, so we must use it's definition
W = ∫ F. dx
Bold indicates vectors. In a spring the force is applied in the direction of movement, whereby the scalar product is reduced to the ordinary product
W = ∫ F dx
We replace and integrate
W = ∫ (-60 x - 18 x²) dx
W = -60 x²/2 -18 x³/3
Let's evaluate between the integration limits, lower W = 0 for x = -0.50 m, to the upper limit W = W for x = 0 m
W = -30 [0- (-0.50) 2] -6 [0 - (- 0.50) 3]
W = 7.5 - 0.75
W = 6.75 J
b) Work is equal to the variation of kinetic energy
W = ΔK
W = ΔK = ½ m v² -0
v =√ 2W/m
v = √(2 6.75/ 0.90)
v = 3.87 m / s
Answer:
if u are caught by the jews u die
Explanation: