Answer:
a) 0.147 N
b) 9.408 N
c) 9.261 N
Explanation:
The tension on the cord is the only force keeping the block in circular motion, thus representing the entirety of its centripetal force
. Plugging in values for initial and final states and we get answers for a and b. The work done by the person causes the centripetal force to increase, and thus is the difference between the final tension and the initial tension.
Answer:
The weights are 1 kg, 3kg, 9kg and 27kg.
Explanation:
The weights are 1 kg, 3kg, 9kg and 27kg.
1+3+9+27= 40
27+9+3= 39
27+9+3-1=38
27+9+1=37
27+9=36
27+9-1=35
27+9+1-3=34
27+9-3=33
27+9-3-1=32
27+3+1=31
27+3=30
27+3-1=29
27+1=28
27
27-1=26
27+1-3=25
27-3=24
27-3-1=23
27+3+1-9=22
27+3-9=21
27+3-9-1=20
Like this all the weights from 1 to 40 kg can be made using 1,3,9 and 27 kg.
Answer:
Because electromagnetic waves can travel through empty space
Explanation:
The energy that is emitted from the sun is transferred to the earth in the form of radioactive waves. These waves are originated due to the vibration between the electric and magnetic fields. As this energy reaches the earth, it warms the earth's atmosphere, resulting in the transfer of heat energy in three possible ways namely the conduction, convection, and radiation.
This electromagnetic waves do not require any matter for the transmission of energy, and can easily travel in empty space from the core of the sun to the earth and other nearby planets. Whereas other types of waves cannot travel in space, so it is transferred in the form of electromagnetic waves only.
<span>Heat is radiated, atmospheric moisture condenses at a rate greater than that at which it can evaporate, resulting in the formation of water droplets.</span>
The velocity of the package after it has fallen for 3.0 s is 29.4 m/s
From the question,
A small package is dropped from the Golden Gate Bridge.
This means the initial velocity of the package is 0 m/s.
We are to calculate the velocity of the package after it has fallen for 3.0 s.
From one of the equations of kinematics for objects falling freely,
We have that,
v = u + gt
Where
v is the final velocity
u is the initial velocity
g is the acceleration due to gravity
and t is time
To calculate the velocity of the package after it has fallen for 3.0 s
That means, we will determine the value of v, at time t = 3.0 s
The parameters are
u = 0 m/s
g = 9.8 m/s²
t = 3.0 s
Putting these values into the equation
v = u + gt
We get
v = 0 + (9.8×3.0)
v = 0 + 29.4
v = 29.4 m/s
Hence, the velocity of the package after it has fallen for 3.0 s is 29.4 m/s
Learn more here: brainly.com/question/13327816