We know that tangential acceleration is related with radius and angular acceleration according the following equation:
at = r * aa
where at is tangential acceleration (in m/s2), r is radius (in m) aa is angular acceleration (in rad/s2)
So the radius is r = d/2 = 1.2/2 = 0.6 m
Then at = 0.6 * 5 = 3 m/s2
Tangential acceleration of a point on the flywheel rim is 3 m/s2
Complete Question
A field mouse trying to escape a hawk runs east for 5.0m, darts southeast for 3.0m, then drops 1.0m down a hole into its burrow. What is the magnitude of the net displacement of the mouse?
Answer:
The values is 
Explanation:
From the question we are told that
The distance it travels eastward is 
The distance it travel towards the southeast is 
The distance it travel towards the south is
Let x-axis be east
y-axis south
z-axis into the ground
The angle made between east and south is 
The displacement toward x-axis is


The displacement toward the y-axis is


Now the overall displacement of the rat is mathematically evaluated as


Answer:
3.036×10⁻¹⁰ N
Explanation:
From newton's law of universal gravitation,
F = Gm1m2/r² .............................. Equation 1
Where F = Gravitational force between the balls, m1 = mass of the first ball, m2 = mass of the second ball, r = distance between their centers.
G = gravitational constant
Given: m1 = 7.9 kg, m2 = 6.1 kg, r = 2.0 m, G = 6.67×10⁻¹¹ Nm²/C²
Substituting into equation 1
F = 6.67×10⁻¹¹×7.9×6.1/2²
F = 321.427×10⁻¹¹/4
F = 30.36×10⁻¹¹
F = 3.036×10⁻¹⁰ N
Hence the force between the balls = 3.036×10⁻¹⁰ N
When you're using a crowbar to lift a large rock, you are working against the force called


Gravity on Earth is what gives weight to all objects, it's defined as all things that have mass or energy are gravitated towards each other. Therefore when you're using a crowbar to lift a large rock, the weight is caused by
gravity.
I hope this helps you!
M/s^2 is the correct answer