Answer:
The acceleration is 1 cm/s^2.
Explanation:
The acceleration is defined as the rate of change of velocity.
Here, initial velocity, u = 3/1 = 3 cm/s
final velocity, v = 4/1 = 4 cm/s
time, t = 1 s
Let the acceleration is a.
Use first equation of motion
v = u + at
4 = 3 + 1 x a
a = 1 cm/s^2
Ith air resistance acting on an object that has been dropped, the object will eventually reach a terminal velocity, which is around 53 m/s (195 km/h or 122 mph) for a human skydiver. ... (On the Moon, the gravitational acceleration is much less than on Earth, approximately 1.6 m/s2.)
Answer:
, 
Explanation:
The acceleration of the plane can be determined by means of the kinematic equation that correspond to a Uniformly Accelerated Rectilinear Motion.
(1)
Where
is the final velocity,
is the initial velocity,
is the acceleration and
is the distance traveled.
Equation (1) can be rewritten in terms of ax:
(2)
Since the plane starts from rest, its initial velocity will be zero (
):
Replacing the values given in equation 2, it is gotten:




So, The acceleration of the plane is
Now that the acceleration is known, the next equation can be used to find out the time:
(3)
Rewritten equation (3) in terms of t:



<u>Hence, the plane takes 26.92 seconds to reach its take-off speed.</u>
Answer:
No, some energy will be dissipated energy due to work of air resistance.