Answer:
5080.86m
Explanation:
We will divide the problem in parts 1 and 2, and write the equation of accelerated motion with those numbers, taking the upwards direction as positive. For the first part, we have:


We must consider that it's launched from the ground (
) and from rest (
), with an upwards acceleration
that lasts a time t=9.7s.
We calculate then the height achieved in part 1:

And the velocity achieved in part 1:

We do the same for part 2, but now we must consider that the initial height is the one achieved in part 1 (
) and its initial velocity is the one achieved in part 1 (
), now in free fall, which means with a downwards acceleration
. For the data we have it's faster to use the formula
, where d will be the displacement, or difference between maximum height and starting height of part 2, and the final velocity at maximum height we know must be 0m/s, so we have:

Then, to get
, we do:



And we substitute the values:

<em><u>Answer </u></em><em><u>:</u></em><em><u>-</u></em><em><u> </u></em><em><u> </u></em><em><u>In</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>light</u></em><em><u> </u></em><em><u>wave</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>prop</u></em><em><u>erty</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>wave</u></em><em><u> </u></em><em><u>which</u></em><em><u> </u></em><em><u>tells</u></em><em><u> </u></em><em><u>about</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>col</u></em><em><u>or</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>light</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>it</u></em><em><u>'s</u></em><em><u> </u></em><em><u>Wavel</u></em><em><u>ength</u></em><em><u> </u></em><em><u>.</u></em><em><u> </u></em><em><u> </u></em>
<em><u>Wavel</u></em><em><u>ength</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>distan</u></em><em><u>ce</u></em><em><u> between</u></em><em><u> </u></em><em><u>one</u></em><em><u> </u></em><em><u>crest</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>one</u></em><em><u> </u></em><em><u>through</u></em><em><u> </u></em><em><u>,</u></em><em><u> </u></em><em><u>also</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>dist</u></em><em><u>ance</u></em><em><u> </u></em><em><u>after</u></em><em><u> </u></em><em><u>which</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>wave</u></em><em><u> </u></em><em><u>repe</u></em><em><u>at</u></em><em><u> </u></em><em><u>its</u></em><em><u>elf</u></em><em><u> </u></em><em><u>!</u></em>
<em><u>It's</u></em><em><u> </u></em><em><u>SI</u></em><em><u> </u></em><em><u>unit</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>meter</u></em><em><u> </u></em><em><u>!</u></em><em><u> </u></em>
<em><u>It</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>scalar</u></em><em><u> </u></em><em><u>quan</u></em><em><u>tity</u></em><em><u> </u></em><em><u>!</u></em><em><u>!</u></em><em><u> </u></em>
<em><u>Diff</u></em><em><u>erent</u></em><em><u> </u></em><em><u>Wavelength</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>light</u></em><em><u> </u></em><em><u>have</u></em><em><u> </u></em><em><u>diff</u></em><em><u>erent</u></em><em><u> </u></em><em><u>col</u></em><em><u>or</u></em><em><u> </u></em><em><u>!</u></em><em><u>!</u></em>
<h2>• VIBGYOR </h2>
i.e, Violent , Indigo , Blue , Green , Yellow Orange, and Red along with their shades are the colors which we can see !!
• They almost range from 400nm to 700nm ( visible range of light )
Answer:
67
Explanation:
- The atomic number (Z) of an atom is equal to the number of protons in the nucleus
- The mass number (A) of an atom is equal to the sum of protons and neutrons in the nucleus
Therefore, calling p the number of protons and n the number of neutrons, for element X we have:
Z = p = 23
A = p + n = 90
Substituting p=23 into the second equation, we find the number of neutrons:
n = 90 - p = 90 - 23 = 67