Answer:
Hey hi
Explanation:
Can you pls tell me which language is this pls I really want to help you... Sorry
Answer:
Molar mass→ 0.930 g / 6.45×10⁻³ mol = 144.15 g/mol
Explanation:
Let's apply the formula for freezing point depression:
ΔT = Kf . m
ΔT = 74.2°C - 73.4°C → 0.8°C
Difference between the freezing T° of pure solvent and freezing T° of solution
Kf = Cryoscopic constant → 5.5°C/m
So, if we replace in the formula
ΔT = Kf . m → ΔT / Kf = m
0.8°C / 5.5 m/°C = m → 0.0516 mol/kg
These are the moles in 1 kg of solvent so let's find out the moles in our mass of solvent which is 0.125 kg
0.0516 mol/kg . 0.125 kg = 6.45×10⁻³ moles. Now we can determine the molar mass:
Molar mass (mol/kg) → 0.930 g / 6.45×10⁻³ mol = 144.15 g/mol
Answer:
![[base]=0.28M](https://tex.z-dn.net/?f=%5Bbase%5D%3D0.28M)
Explanation:
Hello,
In this case, by using the Henderson-Hasselbach equation one can compute the concentration of acetate, which acts as the base, as shown below:
![pH=pKa+log(\frac{[base]}{[acid]} )\\\\\frac{[base]}{[acid]}=10^{pH-pKa}\\\\\frac{[base]}{[acid]}=10^{4.9-4.76}\\\\\frac{[base]}{[acid]}=1.38\\\\](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%28%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%29%5C%5C%5C%5C%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%3D10%5E%7BpH-pKa%7D%5C%5C%5C%5C%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%3D10%5E%7B4.9-4.76%7D%5C%5C%5C%5C%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%3D1.38%5C%5C%5C%5C)
![[base]=1.38[acid]=1.38*0.20M=0.28M](https://tex.z-dn.net/?f=%5Bbase%5D%3D1.38%5Bacid%5D%3D1.38%2A0.20M%3D0.28M)
Regards.
Answer:
Resonance Structures for SCN-:[S-C N]-
Resonance StructureEnergy (kJ/mol)[S-C N]--23.00[S=C=N]
Answer:
Ocean temperature plays an important role in the Earth's climate system—particularly sea surface temperature (see the Sea Surface Temperature indicator)—because heat from ocean surface waters provides energy for storms and thereby influences weather patterns.