Explanation:
the pH of the solution defined as negatuve logarithm of
ion concentration.
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
1. Hydrogen ion concentration when pH of the solution is 11.
![11=-\log[H^+]](https://tex.z-dn.net/?f=11%3D-%5Clog%5BH%5E%2B%5D)
..(1)
At pH = 11, the concentration of
ions is
.
2. Hydrogen ion concentration when the pH of the solution is 6.
![6=-\log[H^+]'](https://tex.z-dn.net/?f=6%3D-%5Clog%5BH%5E%2B%5D%27)
..(2)
At pH = 6, the concentration of
ions is
.
3. On dividing (1) by (2).
![\frac{[H^+]}{[H^+]'}=\frac{1\times 10^{-11} mol/L}{1\times 10^{-6} mol/L}=1\times 10^{-5}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BH%5E%2B%5D%7D%7B%5BH%5E%2B%5D%27%7D%3D%5Cfrac%7B1%5Ctimes%2010%5E%7B-11%7D%20mol%2FL%7D%7B1%5Ctimes%2010%5E%7B-6%7D%20mol%2FL%7D%3D1%5Ctimes%2010%5E%7B-5%7D%20)
The ratio of hydrogen ions in solution of pH equal to 11 to the solution of pH equal to 6 is
.
4. Difference between the
ions at both pH:

This means that Hydrogen ions in a solution at pH = 7 has
ions fewer than in a solution at a pH = 6
Answer:
13.7 moles of O₂ are needed
Explanation:
In order to find the moles of reactants that may react to make the products we need to determine the reaction:
Reactants are hydrogen and oxygen
Product: Water
2 moles of hydrogen can react to 1 mol of oxygen and produce 2 moles of water.
Balanced reaction: 2H₂(g) + O₂(g) → 2H₂O(l)
If 2 moles of hydrogen need 1 mol of oxygen to react
Therefore, 27.4 moles of H₂ must need (27.4 .1) / 2 = 13.7 moles of O₂
Answer:
Option A
Explanation:
Temperature of a body is due to the heat gained or loss. During a phase change, the atoms or molecules of a substance are undergoing change is temperature due to which no temperature change is observed during phase change. The heat in the transition phase is used to break bonds and the change in temperature is felt when kinetic energy change is complete. During transition, the average kinetic energy of the molecules remains unchanged and hence during a phase change a temperature do not changes until unless the phase change is completed.
Hence, option A is correct
The statement "Although sulfuric acid is a strong electrolyte, an aqueous solution of H₂SO₄ contains more HSO₄⁻ ions than SO₄²⁻ ions is <u>True.</u> This is best explained by the fact that H₂SO₄ <u>is a diprotic acid where only the first hydrogen completely ionizes.</u>
Why?
H₂SO₄ is a diprotic acid. That means that it has <u>two hydrogen ions</u> to give to the solution. The two dissociation reactions are shown below:
H₂SO₄ + H₂O → HSO₄⁻ + H₃O⁺
HSO₄⁻ + H₂O ⇄ SO₄²⁻ + H₃O⁺
As the arrows show, the first dissociation is complete, meaning that all the sulfuric acid that is present initially is dissociated into HSO₄⁻ and H₃O⁺. However, the second dissociation is incomplete, and it's actually an equilibrium with an acid constant (Ka)of 1.2×10⁻².
That means that if the initial concentration of H₂SO₄ was 1M, the concentration of HSO₄⁻ is going to be 1M as well, but <u>the concentration of SO₄²⁻ is going to be much less than 1M</u>, according to the dissociation constant.
Have a nice day!
Answer:
An atom of Bromine (Br) forms an ion and becomes Br⁻
Explanation:
- Atoms of elements gain or lose electron(s) to attain a stable configuration and form ions.
- When an atom gains electron(s) it forms a negatively charged ion called an anion.
- For example, Bromine is a halogen and its atom requires to gain one electron to attain stability and form a bromine ion (Br⁻).
- When an atom loses electron(s) it forms a positively charged ion called a cation.
- For instance, atoms of calcium(Ca) requires to lose two electrons to attain stability and form calcium ion (Ca²⁺).