Answer:
m = 1.45 kg
Explanation:
For this exercise we look for size reduction in height
Reduction = y / y₀
Reduction = 2.15 / 6.75
Reduction = 0.3185
As the statue should not be deformed, all reduction has the same factor.
Let's use the concept of density
ρ = m / V
Initial statue
ρ = m₀ / V₀
It is reduced
V = x y z
V = 0.3185 x₀ 0.3185 y₀ 0.3185 z₀
V = 0.3185³ V₀
Density is
ρ = m / V
ρ = m / 0.3185³ V₀
As the density remains constant we can match them
m₀ / Vo = m / 0.3185³ V₀
m = 0.3185³ m₀
Let's calculate
m = 0.3185³ 45
m = 0.03231 45
m = 1.45 kg
Answer:
a human that walks on earth
Explanation:
Answer:
The mass of the object on the Moon (and anywhere else) is about 30.61kg. Please see more detail below.
Explanation:
Weight is the gravitational force exerted on the object and is a function of mass and gravitational acceleration:
(weight) = (mass) x (gravitational acceleration)
We are to find the mass, knowing the weight on Earth to be 300N:
(mass) = (weight on Earth) / (gravitational acceleration on Earth) = 300N / 9.8 m/s^2 = 30.61 kg
The mass of the object is 30.61kg.
The mass of the object is independent of gravity. Therefore the answer to the question "What is its mass on the Moon" is 30.61kg.
If the question were what is its weight on the Moon, the answer would be
(weight on Moon) = (mass) x (grav.accel. on Moon) = 30.61kg x 1.62 m/s^2 = 49.59N
which is about 1/6 of the object's weight on the Earth.
Explanation:
rent me for brainliest pls
Answer:
5.7141 m
Explanation:
Here the potential and kinetic energy will balance each other

This is the initial velocity of the system and the final velocity is 0
t = Time taken = 0.04 seconds
F = Force = 18000 N
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s²
Equation of motion

From Newton's second law

Squarring both sides

The height from which the student fell is 5.7141 m