Answer:
a) I = 2279.5 N s
, b) F = 3.80 10⁵ N, c) I = 3125.5 N s and d) F = 5.21 10⁵ N
Explanation:
The impulse is equal to the variation in the amount of movement.
I =∫ F dt = Δp
I = m
- m v₀
Let's calculate the final speed using kinematics, as the cable breaks the initial speed is zero
² = V₀² - 2g y
² = 0 - 2 9.8 30.0
= √588
= 24.25 m/s
a) We calculate the impulse
I = 94 24.25 - 0
I = 2279.5 N s
b) Let's join the other expression of the impulse to calculate the average force
I = F t
F = I / t
F = 2279.5 / 6 10⁻³
F = 3.80 10⁵ N
just before the crash the passenger jumps up with v = 8 m / s, let's take the moments of interest just when the elevator arrives with a speed of 24.25m/s down and as an end point the jump up to vf = 8 m / n
c) I = m
- m v₀
I = 94 8 - 94 (-24.25)
I = 3125.5 N s
d) F = I / t
F = 3125.5 / 6 10⁻³
F = 5.21 10⁵ N
Answer:
One of the best candidates for a black hole is found in the binary system called A0620-0090. The two objects in the binary system are an orange star, V616 Monocerotis, and a compact object believed to be a black hole. The orbital period of A0620-0090 is 7.75hours, the mass of V616 Monocerotis is estimated to be .67 times the mass of the sun, and the mass of the black hole is estimated to be 3.8 times the mass of the sun. Assuming that the orbits are circular, find the radius of the orbit of the orange star.
Explanation:
Answer:
h=17357.9m
Explanation:
The atmospheric pressure is just related to the weight of an arbitrary column of gas in the atmosphere above a given area. So, if you are higher in the atmosphere less gass will be over you, which means you are bearing less gas and the pressure is less.
To calculate this, you need to use the barometric formula:

Where R is the gas constant, M the molar mass of the gas, g the acceleration of gravity, T the temperature and h the height.
Furthermore, the specific gas constant is defined by:

Therefore yo can write the barometric formula as:

at the surface of the planet (h =0) the pressure is ![P_0[\tex]. The pressure at the height requested is half of that:[tex]P=\frac{P_0}{2}](https://tex.z-dn.net/?f=P_0%5B%5Ctex%5D.%20The%20pressure%20at%20the%20height%20requested%20is%20half%20of%20that%3A%3C%2Fp%3E%3Cp%3E%5Btex%5DP%3D%5Cfrac%7BP_0%7D%7B2%7D)
applying to the previuos equation:

solving for h:
h=17357.9m
i believe your looking for this word ?? "fundamental".