Explanation:
from the equation 1 mole of O2 will give 2 moles of H2O then 6.0 moles of O2 will give x
6.0*2 moles/ 1 mole
= 12 moles
this implies that, 6.0 moles of O2 will give = 12 moles of water
First, calculate for the mass of the aqueous solution by multiplying the given volume (in mL) by the density (in g/mL). In mathematical equation, that is,
m = ρV
where m is mass, ρ is density, and V is volume. Substituting the known values,
m = (1.03 g/mL)(250 mL) = 257.5 g
To get the concentration in ppm, divide the given mass of methanol by the mass of the solution. Note that the parts-per million (ppm) is equal to mass of solute in milligram(mg) divided by the mass of solution in kilogram (kg)
C (in ppm) = (1.56 x 10^-6 g)(1000 mg/1 g) / (257.5 g)(1 kg/1000 g)
Simplifying,
C (in ppm) = (1.56 x 10^-3 mg)/ 0.2575 kg
C (in ppm) = 0.00606 ppm
<em>Answer: 0.00606 ppm</em>
The dissociation of calcium carbonate, CaCO3, to simpler compounds can be expressed as,
CaCO3 --> CaO + CO2
The precipitate is CaO and its amount is calculated through the difference which will give us the answer of 5.6 g.
When a molecule can occupy the same active site as the substrate, a situation called enzymes can result.
<u>8:4 and 4:8</u> both have CCP structure............................... ᐛ