We use the gas law named Charle's law for the calculation of the second temperature. The law states that,
V₁T₂ = V₂T₁
Substituting the known values,
(0.456 L)(65 + 273.15) = (3.4 L)(T₁)
T₁ = 45.33 K
Answer:
C
Explanation:
A negative deltaH means that the reaction has to give up heat in order to happen. You have to treat deltaH as a reactant. So the question is do you need to add heat to the reactants to make the products. If you do, deltaH is plus.
Heat is required to make a solid go to a gas. deltaH is plus. A is not the answer.
A lot of heat is required for B (something like 400 Kj / mole. Like A, deltaH is plus and B is not the answer.
C: The liquid has to give up heat in order for the this reaction to take place. C is the answer.
D requires heat. It is not the answer.
multiply by 100.4.36×10-5cm
Answer:
The answer is C. The partial pressure of hydrogen will be unchanged.
Explanation:
⇒ 
Argon with electronic configuration
(that is atomic number 18) is an inert gas making it unreactive and it's addition to the reaction has no effect on the partial pressure of either the reactant or production or the state of the system.
The partial pressure of hydrogen will remain unchanged on the addition of Argon.
Answer: The balanced equation is
.
Explanation:
The given reaction equation is as follows.

Number of atoms present on reactant side are as follows.
- Li = 1
- H = 1
= 1
Number of atoms present on product side are as follows.
- Li = 1
- H = 2
= 1
To balance this equation, multiply Li by 2 and
by 2 on reactant side. Also, multiply
by 2 on product side.
Hence, the equation can be rewritten as follows.

Now, number of atoms present on reactant side are as follows.
- Li = 2
- H = 2
= 2
Number of atoms present on product side are as follows.
- Li = 2
- H = 2
= 2
As there are same number of atoms on both reactant and product side. Hence, the equation is now balanced.
Thus, we can conclude that the balanced equation is
.