Reactives
-> Products
CuO
and water are products.
I
found this reaction which has CuO and water as products: decomposition of
Cu(OH)2.
Cu(OH)2
-> CuO + H2O
Stoichiometry calculus involve the mole
proportions you can see in the reaction: When 1 mole of Cu(OH)2 reacts, 1 mole of
CuO and 1 mole of H2O are formed.
Considering
the molar masses:
Cu(OH)2
= 83.56 g/mol
CuO
= 79.545 g/mol
H2O
= 18.015 g/mol
Then:
When 83.56 g of Cu(OH)2 react, 79.545 g of CuO and 18.015 g H2O are formed.
You
should use that numbers in the rule of three:
79.545
g CuO __________18.015 g water
3.327
g CuO__________ x =3.327*18.015 /79.545 g water
x= 0.7535 g water
Answer:
A = Metallic Bond
B = Strong bonding, strong conductor, high melting and boiling points
Explanation:
Since the bond is between two metals (located in groups 11 and 12), they would experience metallic bonding. Metallically bonded molecules have high melting and boiling points due to the strength of the metallic bond. They also experience strong electrical current due to the there delocalized electrons.
Both fission and fusion are nuclear reactions that produce energy, but the applications are not the same. Fission is the splitting of a heavy, unstable nucleus into two lighter nuclei, and fusion is the process where two light nuclei combine together releasing vast amounts of energy.
<h3><u> Answer</u>;</h3>
= 4.0 L
<h3><u>Explanation;</u></h3>
Boyle's law states that the volume of a fixed mass of a gas is inversely proportional to pressure at a constant temperature.
Therefore; <em>Volume α 1/pressure</em>
<em>Mathematically; V α 1/P</em>
<em>V = kP, where k is a constant;</em>
<em>P1V1 = P2V2</em>
<em>V1 = 0.5 l, P1 =203 kPa, P2 = 25.4 kPa</em>
<em>V2 = (0.5 × 203 )/25.4 </em>
<em> = 3.996 </em>
<em> ≈ </em><em><u>4.0 L</u></em>