Suppose 110.0 mL of hydrogen gas at STP combines with a stoichiometric amount of fluorine gas and the resulting hydrogen fluoride dissolves in water to form 150.0 mL of an aqueous solution. 0.032 M is the concentration of the resulting hydrofluoric acid.
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
Now write the balanced chemical equation
H₂ + F₂ → 2HF
<h3>What is Ideal Gas ?</h3>
An ideal gas is a gas that obey gas laws at all temperature and pressure conditions. It have velocity and mass but do not have volume. Ideal gas is also called perfect gas. Ideal gas is a hypothetical gas.
It is expressed as:
PV = nRT
where,
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant
T = temperature
Here,
P = 1 atm [At STP]
V = 110 ml = 0.11 L
T = 273 K [At STP]
R = 0.0821 [Ideal gas constant]
Now put the values in above expression
PV = nRT
1 atm × 0.11 L = n × 0.0821 L.atm/ K. mol × 273 K

n = 0.0049 mol
<h3>How to find the concentration of resulting solution ? </h3>
To calculate the concentration of resulting solution use the expression

= 0.032 M
Thus from the above conclusion we can say that Suppose 110.0 mL of hydrogen gas at STP combines with a stoichiometric amount of fluorine gas and the resulting hydrogen fluoride dissolves in water to form 150.0 mL of an aqueous solution. 0.032 M is the concentration of the resulting hydrofluoric acid.
Learn more about the Ideal Gas here: brainly.com/question/25290815
#SPJ4
Answer:
E
Explanation:
Why can a signaling molecule cause different responses in different cells? Different cells have membrane receptors that bind to different sides of the signaling molecule. The transduction process is unique to each cell type; to respond to a signal, different cells require only a similar membrane receptor
Answer: <span>Molecular geometry around each carbon atom in a saturated hydrocarbon is
Tetrahedral.
Explanation: </span> In saturated hydrocarbons (-CH₂-) the central atom (
carbon) is bonded to either three or two hydrogen atoms and one or two carbon atoms. So, the central atom is having four electron pairs and all pairs are bonding pairs and lacks any lone pair of electron. According to
Valence Shell Electron Pair Repulsion (VSEPR)
Theory the central atom with four bonding pair electrons and zero lone pair electrons will attain a
tetrahedral geometry with
bond angles of 109°.
A decomposition reaction<span> is a type of chemical </span>reaction<span> in which a single compound breaks down into two or more elements or new compounds. These </span>reactions<span> often involve an energy source such as heat, light, or electricity that breaks apart the bonds of compounds. so it is a decomposition reaction because the silver chloride breaks down into silver and chlorine</span>