
Hi pupil Here's Your answer :::
➡➡➡➡➡➡➡➡➡➡➡➡➡
Student's justification is not correct. Two equal and opposite force cancel each other if the act on the same body. According to the third law of motion action and reaction forces are equal and opposite but they both act on different bodies. Hence, they cannot cancel each other.
When we push a message track, then the applied force on the truck is not sufficient to overcome the force of friction between the tyres of truck and ground, hence, truck does not move.
⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅
Hope this helps .
Answer:
The force per unit length is 
Explanation:
The current carrying by each wires = 2.85 A
The current in both wires flows in same direction.
The gap between the wires = 6.10 cm
Now we will use the below expression for the force per unit length. Moreover, before using the below formula we have to change the unit centimetre into meter. So, we just divide the centimetre with 100.

Answer:
0.707m
Explanation:
from formula of range i.e R=Usin2Q/g
The answer is 12.5 kg because 250N / 20m/s^2
I hope that helped
The speed of cart b is 6m/s while the total momentum of the systmen is 4200 kg m/s
<h3>Conservation of Linear Momentum</h3>
Given Data
- Mass of cart one M1 = 150kg
- Initial Velocity U1 = 8m/s
Mass of cart two M2 = 150kg
Velocity U2 = 6m/s
Applying the principle of conservation of linear momentum we have
M1U1+M2U2 = M1V1+ M2V2
a. what is the speed of cart b after collision
substituting our given data we have
150*8+ 150*6 = 150*5+150*V2
1200 + 900 = 1200+ 150V2
2100 - 1200 = 150V2
900 = 150V2
Divide both sides by 150
V2 = 900/150
V2 = 6m/s
b. what is the total momentum of the system before and after collision
Total Momentum in the system is
Total momentum = Momentum before Impact+ Momentum after Impact
Total momentum = M1U1+M2U2 + M1V1+ M2V2
Total momentum = 1200 + 900 + 1200+ 900
Total momentum = 4200 kg m/s
Learn more about Conservation of Linear Momentum here:
brainly.com/question/7538238