Answer:
50 kg
Explanation:
Given,
Force ( F ) = 100 N
Acceleration ( a ) = 2 m/s^2
To find : Mass ( m ) = ?
Formula : -
F = ma
m = F / a
= 100 / 2
m = 50 kg
Therefore, the mass of the object is 50 kg.
We can use the law of conservation of energy to solve the problem.
The total mechanical energy of the system at any moment of the motion is:

where U is the potential energy and K the kinetic energy.
At the beginning of the motion, the ball starts from the ground so its altitude is h=0 and therefore its potential energy U is zero. So, the mechanical energy is just kinetic energy:

When the ball reaches the maximum altitude of its flight, it starts to go down again, so its speed at that moment is zero: v=0. So, its kinetic energy at the top is zero. So the total mechanical energy is just potential energy:

But the mechanical energy must be conserved, Ef=Ei, so we have

and so, the potential energy at the top of the flight is
Answer
Correct answers are 1.an increase or decrease in pressure 2.an increase or decrease in energy
Explanation
All existing matter can undergo phase change it means they may transform from one state to another. phase change of a matter may occur due to change in energy and change in pressures.
for example there is an ice cube which is a solid and if we want to change it phase into liquid water for that purpose we have to supply some energy to ice cube it means we have to give some heat to ice cube. After supplying heat energy to the ice it will turn into water it means there is phase change from solid to liquid due to supplying the heat. Similarly we can change the liquid water into solid ice cube by taking heat energy(reducing temperature) from the liquid water .
In some cases the matter doesn't want to undergo phase transformation. For example, oxygen will solidify at -361.8 degrees Fahrenheit at standard pressure.But , it can change to solid state at warmer temperatures when the pressure is increased.
Elastic potential energy.
When you stretch a rubber band it has the "potential" to do work, to fly in a given direction. In doing so it changes it's elastic potential energy to kinetic energy.