Answer:
2.5 cm
Explanation:
Number of spins in 12 seconds = 18
Number of spins in 1 second = 18 / 12 = 1.5
Number of spins in one second is called frequency.
f = 1.5 rps
ac = 2.2 m/s^2
Let r be the radius of coin
Centripetal acceleration, ac = r x w^2
2.2 = r x ( 2 x 3.14 x 1.5) ^2
2.2 = r x 88.7364
r = 0.025 m = 2.5 cm
The least number of component of a vector quantity is two. These are the x-component and the y-component.
The resultant vector, or vector as we refer to it in this item, can be calculated through the equation,
RV = sqrt ((Vx)² + (Vy)²)
From the equation, it can be noted that if we let Vx equal to zero,
RV = Vy
Similarly, if we let Vy be equal to zero then,
RV = Vx
Thus, it is still possible for the vector to become nonzero even if one of its components is zero.
Answer:
a) y= 3.5 10³ m, b) t = 64 s
Explanation:
a) For this exercise we use the vertical launch kinematics equation
Stage 1
y₁ = y₀ + v₀ t + ½ a t²
y₁ = 0 + 0 + ½ a₁ t²
Let's calculate
y₁ = ½ 16 10²
y₁ = 800 m
At the end of this stage it has a speed
v₁ = vo + a₁ t₁
v₁ = 0 + 16 10
v₁ = 160 m / s
Stage 2
y₂ = y₁ + v₁ (t-t₀) + ½ a₂ (t-t₀)²
y₂ = 800 + 150 5 + ½ 11 5²
y₂ = 1092.5 m
Speed is
v₂ = v₁ + a₂ t
v₂ = 160 + 11 5
v₂ = 215 m / s
The rocket continues to follow until the speed reaches zero (v₃ = 0)
v₃² = v₂² - 2 g y₃
0 = v₂² - 2g y₃
y₃ = v₂² / 2g
y₃ = 215²/2 9.8
y₃ = 2358.4 m
The total height is
y = y₃ + y₂
y = 2358.4 + 1092.5
y = 3450.9 m
y= 3.5 10³ m
b) Flight time is the time to go up plus the time to go down
Let's look for the time of stage 3
v₃ = v₂ - g t₃
v₃ = 0
t₃ = v₂ / g
t₃ = 215 / 9.8
t₃ = 21.94 s
The time to climb is
= t₁ + t₂ + t₃
t_{s} = 10+ 5+ 21.94
t_{s} = 36.94 s
The time to descend from the maximum height is
y = v₀ t - ½ g t²
When it starts to slow down it's zero
y = - ½ g t_{b}²
t_{b} = √-2y / g
t_{b} = √(- 2 (-3450.9) /9.8)
t_{b} = 26.54 s
Flight time is the rise time plus the descent date
t = t_{s} + t_{b}
t = 36.94 + 26.54
t =63.84 s
t = 64 s
There is a repulsive force between two charged objects when they are of like charges/ they are likely charged (like charges repel each other)