0.284 liter is the answer
Answer:
About 547 grams.
Explanation:
We want to determine the mass of copper (II) bicarbonate produced when a reaction produces 2.95 moles of copper (II) bicarbonate.
To do so, we can use the initial value and convert it to grams using the molar mass.
Find the molar mass of copper (II) bicarbonate by summing the molar mass of each individual atom:

Dimensional Analysis:

In conclusion, about 547 grams of copper (II) bicarbonate is produced.
Jackie is the fastest student. (Option A)
Explanation:
- From the table it was understood that their speeds are given in meter per second, that is how many meters they run in one second. It was again shown that Jackie's race speed is 5.3 meter per second and all the other three namely Jeremy's speed is 3.9 meter per second, Mike's speed is 4.1 meter per second and finally Niki's speed is 3.8 meter per second.
- So, by comparing with others Jackie is the fastest runner in that race.
Answer:
Atomic number=No. of protons=No. of electrons in ground state(unchanged atom)
Atomic number=13=No. of protons
Atomic mass=no. of protons+no. of neutrons=13+14=27
For isotope no. of proton=13(same atomic number but different mass number are isotopes)
no. of electrons=13
no. of neutrons=14+2=16
Explanation:
hope it's help you
We will use Arrehenius equation
lnK = lnA -( Ea / RT)
R = gas constant = 8.314 J / mol K
T = temperature = 25 C = 298 K
A = frequency factor
ln A = ln (1.5×10 ^11) = 25.73
Ea = activation energy = 56.9 kj/mol = 56900 J / mol
lnK = 25.73 - (56900 / 8.314 X 298) = 2.76
Taking antilog
K = 15.8